Skip to main content

Advertisement

Log in

Targeting the extracellular matrix for immunomodulation: applications in drug delivery and cell therapies

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Host immune cells interact bi-directionally with their extracellular matrix (ECM) to receive and deposit molecular signals, which orchestrate cellular activation, proliferation, differentiation, and function to maintain healthy tissue homeostasis. In response to pathogens or damage, immune cells infiltrate diseased sites and synthesize critical ECM molecules such as glycoproteins, proteoglycans, and glycosaminoglycans to promote healing. When the immune system misidentifies pathogens or fails to survey damaged cells effectively, maladies such as chronic inflammation, autoimmune diseases, and cancer can develop. In these conditions, it is essential to restore balance to the body through modulation of the immune system and the ECM. This review details the components of dysregulated ECM implicated in pathogenic environments and therapeutic approaches to restore tissue homeostasis. We evaluate emerging strategies to overcome inflamed, immune inhibitory, and otherwise diseased microenvironments, including mechanical stimulation, targeted proteases, adoptive cell therapy, mechanomedicine, and biomaterial-based cell therapeutics. We highlight various strategies that have produced efficacious responses in both pre-clinical and human trials and identify additional opportunities to develop next-generation interventions. Significantly, we identify a need for therapies to address dense or fibrotic tissue for the treatment of organ tissue damage and various cancer subtypes. Finally, we conclude that therapeutic techniques that disrupt, evade, or specifically target the pathogenic microenvironment have a high potential for improving therapeutic outcomes and should be considered a priority for immediate exploration.

Graphical abstract

A schematic showing the various methods of extracellular matrix disruption/targeting in both fibrotic and cancerous environments. a Biomaterial-based cell therapy can be used to deliver anti-inflammatory cytokines, chemotherapeutics, or other factors for localized, slow release of therapeutics. b Mechanotherapeutics can be used to inhibit the deposition of molecules such as collagen that affect stiffness. c Ablation of the ECM and target tissue can be accomplished via mechanical degradation such as focused ultrasound. d Proteases can be used to improve the distribution of therapies such as oncolytic virus. e Localization of therapeutics such as checkpoint inhibitors can be improved with the targeting of specific ECM components, reducing off-target effects and toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

There is no primary data included in this manuscript.

References

  1. Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15(12):802–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dziki JL, et al. Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype. J Biomed Mater Res A. 2017;105(1):138–47.

    Article  CAS  PubMed  Google Scholar 

  3. Song I, Dityatev A. Crosstalk between glia, extracellular matrix and neurons. Brain Res Bull. 2018;136:101–8.

    Article  CAS  PubMed  Google Scholar 

  4. Cox TR. The matrix in cancer. Nat Rev Cancer. 2021.

  5. Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003;3(6):422–33.

    Article  CAS  PubMed  Google Scholar 

  6. Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol. 2010;341(1):126–40.

    Article  CAS  PubMed  Google Scholar 

  7. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15(12):786–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fry CS, et al. Myogenic progenitor cells control extracellular matrix production by fibroblasts during skeletal muscle hypertrophy. Cell Stem Cell. 2017;20(1):56–69.

    Article  CAS  PubMed  Google Scholar 

  9. Sato E, et al. Activation of parathyroid hormone 2 receptor induces decorin expression and promotes wound repair. J Invest Dermatol. 2017;137(8):1774–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stephenson EL, Yong VW. Pro-inflammatory roles of chondroitin sulfate proteoglycans in disorders of the central nervous system. Matrix Biol. 2018;71–72:432–42.

    Article  PubMed  CAS  Google Scholar 

  11. Lu P, et al. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3(12).

  12. Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011;4(2):165–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(Pt 24):4195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18(7):1028–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jarvelainen H, et al. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev. 2009;61(2):198–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bateman JF, Boot-Handford RP, Lamande SR. Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations. Nat Rev Genet. 2009;10(3):173–83.

    Article  CAS  PubMed  Google Scholar 

  17. Bhattacharjee O, et al. Unraveling the ECM-immune cell crosstalk in skin diseases. Front Cell Dev Biol. 2019;7:68.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dominguez-Villar M, Hafler DA. Regulatory T cells in autoimmune disease. Nat Immunol. 2018;19(7):665–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Furman D, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Invest. 2015;125(6):2228–33.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tavernier SJ, et al. Author correction: a human immune dysregulation syndrome characterized by severe hyperinflammation with a homozygous nonsense Roquin-1 mutation. Nat Commun. 2019;10(1):5337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fisher JP, et al. Gammadelta T cells for cancer immunotherapy: a systematic review of clinical trials. Oncoimmunology. 2014;3(1):e27572.

  23. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20(11):651–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Duitman J, van den Ende T, Spek CA. Immune checkpoints as promising targets for the treatment of idiopathic pulmonary fibrosis? J Clin Med. 2019;8(10).

  25. Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res. 2020;30(6):507–19.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol. 2014;15(12):771–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yue B. Biology of the extracellular matrix: an overview. J Glaucoma. 2014;23(8 Suppl 1):S20–3.

    Article  PubMed  Google Scholar 

  28. Kular JK, Basu S, Sharma RI. The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng. 2014;5:2041731414557112.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Padhi A, Nain AS. ECM in differentiation: a review of matrix structure, composition and mechanical properties. Ann Biomed Eng. 2020;48(3):1071–89.

    Article  PubMed  Google Scholar 

  30. Vogel V. Unraveling the mechanobiology of extracellular matrix. Annu Rev Physiol. 2018;80:353–87.

    Article  CAS  PubMed  Google Scholar 

  31. Walma DAC, Yamada KM. The extracellular matrix in development. Development. 2020;147(10).

  32. Ho YJ, et al. Ultrasound in tumor immunotherapy: current status and future developments. J Control Release. 2020;323:12–23.

    Article  CAS  PubMed  Google Scholar 

  33. Li S, et al. Cancer immunotherapy via targeted TGF-beta signalling blockade in TH cells. Nature. 2020;587(7832):121–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bollyky PL, et al. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proc Natl Acad Sci U S A. 2011;108(19):7938–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O’Connor RS, et al. Substrate rigidity regulates human T cell activation and proliferation. J Immunol. 2012;189(3):1330–9.

    Article  CAS  PubMed  Google Scholar 

  36. Burbage M, Amigorena S. A dendritic cell multitasks to tackle cancer. Nature. 2020;584(7822):533–4.

    Article  CAS  PubMed  Google Scholar 

  37. Hato T, Zhu AX, Duda DG. Rationally combining anti-VEGF therapy with checkpoint inhibitors in hepatocellular carcinoma. Immunotherapy. 2016;8(3):299–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ellis LM, Reardon DA. Cancer: the nuances of therapy. Nature. 2009;458(7236):290–2.

    Article  CAS  PubMed  Google Scholar 

  39. Jain RK, et al. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol. 2006;3(1):24–40.

    Article  CAS  PubMed  Google Scholar 

  40. Yousefi H, et al. Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance. Oncogene. 2021;40(6):1043–63.

    Article  CAS  PubMed  Google Scholar 

  41. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iida J, et al. Cell surface chondroitin sulfate proteoglycans in tumor cell adhesion, motility and invasion. Semin Cancer Biol. 1996;7(3):155–62.

    Article  CAS  PubMed  Google Scholar 

  43. Das N, et al. Proteoglycan 4: from mere lubricant to regulator of tissue homeostasis and inflammation: does proteoglycan 4 have the ability to buffer the inflammatory response? Bioessays. 2019;41(1):e1800166.

  44. Le Jan S, et al. Functional overlap between chondroitin and heparan sulfate proteoglycans during VEGF-induced sprouting angiogenesis. Arterioscler Thromb Vasc Biol. 2012;32(5):1255–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Jin H, Varner J. Integrins: roles in cancer development and as treatment targets. Br J Cancer. 2004;90(3):561–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seguin L, et al. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 2015;25(4):234–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zeltz C, et al. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin Cancer Biol. 2020;62:166–81.

    Article  CAS  PubMed  Google Scholar 

  48. Abyaneh HS, et al. Towards extracellular matrix normalization for improved treatment of solid tumors. Theranostics. 2020;10(4):1960–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Su Z, et al. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer. 2015;14:48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. 2018;18(9):533–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bendas G, Borsig L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol. 2012;2012:676731.

  52. Lasinska I, Mackiewicz J. Integrins as a new target for cancer treatment. Anticancer agents Med Chem. 2019;19(5):580–6.

    Article  CAS  PubMed  Google Scholar 

  53. Kechagia JZ, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol. 2019;20(8):457–73.

    Article  CAS  PubMed  Google Scholar 

  54. Ley K, et al. Integrin-based therapeutics: biological basis, clinical use and new drugs. Nat Rev Drug Discov. 2016;15(3):173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goodman SL, Picard M. Integrins as therapeutic targets. Trends Pharmacol Sci. 2012;33(7):405–12.

    Article  CAS  PubMed  Google Scholar 

  56. Nissen NI, Karsdal M, Willumsen N. Collagens and cancer associated fibroblasts in the reactive stroma and its relation to cancer biology. J Exp Clin Cancer Res. 2019;38(1):115.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Alexander J, Cukierman E. Cancer associated fibroblast: mediators of tumorigenesis. Matrix Biol. 2020;91–92:19–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Buechler MB, et al. Cross-tissue organization of the fibroblast lineage. Nature. 2021.

  59. DeLeon-Pennell KY, Barker TH, Lindsey ML. Fibroblasts: the arbiters of extracellular matrix remodeling. Matrix Biol. 2020;91–92:1–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Alberts B, et al. Cell Junctions, cell adhesion, and the extracellular matrix. 2019.

  61. Liu L, et al. Stromal myofibroblasts are associated with poor prognosis in solid cancers: a meta-analysis of published studies. PLoS One. 2016;11(7):e0159947.

  62. Doyle AD, et al. 3D mesenchymal cell migration is driven by anterior cellular contraction that generates an extracellular matrix prestrain. Dev Cell. 2021;56(6):826–41 e4.

  63. Henke E, Nandigama R, Ergun S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 2019;6:160.

    Article  CAS  PubMed  Google Scholar 

  64. Shukla A, et al. CLIC4 regulates TGF-beta-dependent myofibroblast differentiation to produce a cancer stroma. Oncogene. 2014;33(7):842–50.

    Article  CAS  PubMed  Google Scholar 

  65. Fukumura D, et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15(5):325–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Verona EV, et al. Transforming growth factor-beta signaling in prostate stromal cells supports prostate carcinoma growth by up-regulating stromal genes related to tissue remodeling. Cancer Res. 2007;67(12):5737–46.

    Article  CAS  PubMed  Google Scholar 

  67. Santi A, Kugeratski FG, Zanivan S. Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics. 2018;18(5–6):e1700167.

  68. Winkler J, et al. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 2020;11(1):5120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jang I, Beningo KA. Integrins, CAFs and mechanical forces in the progression of cancer. Cancers (Basel). 2019;11(5).

  70. Wang K, et al. Stiffening and unfolding of early deposited-fibronectin increase proangiogenic factor secretion by breast cancer-associated stromal cells. Biomaterials. 2015;54:63–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang K, et al. Breast cancer cells alter the dynamics of stromal fibronectin-collagen interactions. Matrix Biol. 2017;60–61:86–95.

    Article  PubMed  CAS  Google Scholar 

  72. White ES, Baralle FE, Muro AF. New insights into form and function of fibronectin splice variants. J Pathol. 2008;216(1):1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bonnal SC, Lopez-Oreja I, Valcarcel J. Roles and mechanisms of alternative splicing in cancer - implications for care. Nat Rev Clin Oncol. 2020;17(8):457–74.

    Article  PubMed  Google Scholar 

  74. Efthymiou G, et al. Shaping up the tumor microenvironment with cellular fibronectin. Front Oncol. 2020;10:641.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jailkhani N, et al. Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proc Natl Acad Sci U S A. 2019;116(28):14181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. White ES, Muro AF. Fibronectin splice variants: understanding their multiple roles in health and disease using engineered mouse models. IUBMB Life. 2011;63(7):538–46.

    Article  CAS  PubMed  Google Scholar 

  77. Kraft S, et al. Identification and characterization of a unique role for EDB fibronectin in phagocytosis. J Mol Med (Berl). 2016;94(5):567–81.

    Article  CAS  Google Scholar 

  78. Shi F, et al. Collagen I matrix turnover is regulated by fibronectin polymerization. Am J Physiol Cell Physiol. 2010;298(5):C1265–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Provenzano PP, et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6:11.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Egeblad M, Rasch MG, Weaver VM. Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol. 2010;22(5):697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Malik R, Lelkes PI, Cukierman E. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends Biotechnol. 2015;33(4):230–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brett EA, et al. Tumor-associated collagen signatures: pushing tumor boundaries. Cancer Metab. 2020;8:14.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Conklin MW, et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol. 2011;178(3):1221–32.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xi G, et al. Large-scale tumor-associated collagen signatures identify high-risk breast cancer patients. Theranostics. 2021;11(7):3229–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Roussos ET, Condeelis JS, Patsialou A. Chemotaxis in cancer. Nat Rev Cancer. 2011;11(8):573–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Levental KR, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139(5):891–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nallanthighal S, Heiserman JP, Cheon DJ. The role of the extracellular matrix in cancer stemness. Front Cell Dev Biol. 2019;7:86.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Shintani Y, et al. Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor-beta signaling. Am J Respir Cell Mol Biol. 2008;38(1):95–104.

    Article  CAS  PubMed  Google Scholar 

  89. Goetzl EJ, Banda MJ, Leppert D. Matrix metalloproteinases in immunity. J Immunol. 1996;156(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  90. Badier-Commander C, et al. Increased TIMP/MMP ratio in varicose veins: a possible explanation for extracellular matrix accumulation. J Pathol. 2000;192(1):105–12.

    Article  CAS  PubMed  Google Scholar 

  91. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8(3):221–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Elkington PT, O’Kane CM, Friedland JS. The paradox of matrix metalloproteinases in infectious disease. Clin Exp Immunol. 2005;142(1):12–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta. 2010;1803(1):55–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jinga DC, et al. MMP-9 and MMP-2 gelatinases and TIMP-1 and TIMP-2 inhibitors in breast cancer: correlations with prognostic factors. J Cell Mol Med. 2006;10(2):499–510.

    Article  CAS  PubMed  Google Scholar 

  97. Akhavan A, et al. Loss of cell-surface laminin anchoring promotes tumor growth and is associated with poor clinical outcomes. Cancer Res. 2012;72(10):2578–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Asimakopoulou AP, et al. The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents. In Vivo. 2008;22(3):385–9.

    CAS  Google Scholar 

  99. Cid-Arregui A, Juarez V. Perspectives in the treatment of pancreatic adenocarcinoma. World J Gastroenterol. 2015;21(31):9297–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fthenou E, et al. Chondroitin sulfate A regulates fibrosarcoma cell adhesion, motility and migration through JNK and tyrosine kinase signaling pathways. In Vivo. 2009;23(1):69–76.

    CAS  Google Scholar 

  101. Gremlich S, et al. Tenascin-C inactivation impacts lung structure and function beyond lung development. Sci Rep. 2020;10(1):5118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Karamanou K, et al. Lumican effectively regulates the estrogen receptors-associated functional properties of breast cancer cells, expression of matrix effectors and epithelial-to-mesenchymal transition. Sci Rep. 2017;7:45138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kiani C, et al. Structure and function of aggrecan. Cell Res. 2002;12(1):19–32.

    Article  PubMed  Google Scholar 

  104. Krishnan A, et al. Lumican, an extracellular matrix proteoglycan, is a novel requisite for hepatic fibrosis. Lab Invest. 2012;92(12):1712–25.

    Article  CAS  PubMed  Google Scholar 

  105. Pas J, et al. Analysis of structure and function of tenascin-C. Int J Biochem Cell Biol. 2006;38(9):1594–602.

    Article  CAS  PubMed  Google Scholar 

  106. Sethi T, et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med. 1999;5(6):662–8.

    Article  CAS  PubMed  Google Scholar 

  107. Singleton PA. Hyaluronan regulation of endothelial barrier function in cancer. Adv Cancer Res. 2014;123:191–209.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Skandalis SS, et al. Cartilage aggrecan undergoes significant compositional and structural alterations during laryngeal cancer. Biochim Biophys Acta. 2006;1760(7):1046–53.

    Article  CAS  PubMed  Google Scholar 

  109. Sotoodehnejadnematalahi F, Burke B. Structure, function and regulation of versican: the most abundant type of proteoglycan in the extracellular matrix. Acta Med Iran. 2013;51(11):740–50.

    CAS  PubMed  Google Scholar 

  110. Wang JP, Hielscher A. Fibronectin: how its aberrant expression in tumors may improve therapeutic targeting. J Cancer. 2017;8(4):674–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang Z, et al. Fibrillin-1, induced by Aurora-A but inhibited by BRCA2, promotes ovarian cancer metastasis. Oncotarget. 2015;6(9):6670–83.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Murad HY, et al. Mechanochemical disruption suppresses metastatic phenotype and pushes prostate cancer cells toward apoptosis. Mol Cancer Res. 2019;17(5):1087–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kim YS, et al. High-intensity focused ultrasound therapy: an overview for radiologists. Korean J Radiol. 2008;9(4):291–302.

    Article  PubMed  PubMed Central  Google Scholar 

  114. van den Bijgaart RJ, et al. Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies. Cancer Immunol Immunother. 2017;66(2):247–58.

    Article  PubMed  Google Scholar 

  115. Barkin J. High intensity focused ultrasound (HIFU). Can J Urol. 2011;18(2):5634–43.

    PubMed  Google Scholar 

  116. Sheybani ND, et al. Combination of thermally ablative focused ultrasound with gemcitabine controls breast cancer via adaptive immunity. J Immunother Cancer. 2020;8(2).

  117. Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27(1):74–95.

    Article  CAS  PubMed  Google Scholar 

  118. Jia L, et al. Focused low-intensity pulsed ultrasound affects extracellular matrix degradation via decreasing chondrocyte apoptosis and inflammatory mediators in a surgically induced osteoarthritic rabbit model. Ultrasound Med Biol. 2016;42(1):208–19.

    Article  PubMed  Google Scholar 

  119. Korkusuz H, et al. Volume reduction of benign thyroid nodules 3 months after a single treatment with high-intensity focused ultrasound (HIFU). J Ther Ultrasound. 2015;3:4.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lang BHH, Woo YC, Chiu KW. Combining high-intensity focused ultrasound (HIFU) ablation with percutaneous ethanol injection (PEI) in the treatment of benign thyroid nodules. Eur Radiol. 2020.

  121. Kramer G, et al. Response to sublethal heat treatment of prostatic tumor cells and of prostatic tumor infiltrating T-cells. Prostate. 2004;58(2):109–20.

    Article  CAS  PubMed  Google Scholar 

  122. Blanco P, et al. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev. 2008;19(1):41–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ghai S, et al. MRI-guided focused ultrasound ablation for localized intermediate-risk prostate cancer: early results of a phase II trial. Radiology. 2021;298(3):695–703.

    Article  PubMed  Google Scholar 

  124. Yuh EL, et al. Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: study in a murine model. Radiology. 2005;234(2):431–7.

    Article  PubMed  Google Scholar 

  125. Liu HL, et al. Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology. 2010;255(2):415–25.

    Article  PubMed  Google Scholar 

  126. Lee JY, et al. Concurrent chemotherapy and pulsed high-intensity focused ultrasound therapy for the treatment of unresectable pancreatic cancer: initial experiences. Korean J Radiol. 2011;12(2):176–86.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sheybani ND, Price RJ. Perspectives on recent progress in focused ultrasound immunotherapy. Theranostics. 2019;9(25):7749–58.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Hynynen K, Lulu BA. Hyperthermia in cancer treatment. Invest Radiol. 1990;25(7):824–34.

    Article  CAS  PubMed  Google Scholar 

  129. Rueff LE, Raman SS. Clinical and technical aspects of MR-guided high intensity focused ultrasound for treatment of symptomatic uterine fibroids. Semin Intervent Radiol. 2013;30(4):347–53.

    Article  PubMed  PubMed Central  Google Scholar 

  130. LeBlang SD, Hoctor K, Steinberg FL. Leiomyoma shrinkage after MRI-guided focused ultrasound treatment: report of 80 patients. AJR Am J Roentgenol. 2010;194(1):274–80.

    Article  PubMed  Google Scholar 

  131. Chen D, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 2017;5:16044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Akkiraju H, Nohe A. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. J Dev Biol. 2015;3(4):177–92.

    Article  PubMed  CAS  Google Scholar 

  133. Lu P, et al. Increased infiltration of activated tumor-infiltrating lymphocytes after high intensity focused ultrasound ablation of human breast cancer. Surgery. 2009;145(3):286–93.

    Article  PubMed  Google Scholar 

  134. Chavez M, et al. Distinct immune signatures in directly treated and distant tumors result from TLR adjuvants and focal ablation. Theranostics. 2018;8(13):3611–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Curley CT, et al. Augmentation of brain tumor interstitial flow via focused ultrasound promotes brain-penetrating nanoparticle dispersion and transfection. Sci Adv. 2020;6(18):eaay1344.

  136. Santos MA, et al. Novel fractionated ultrashort thermal exposures with MRI-guided focused ultrasound for treating tumors with thermosensitive drugs. Sci Adv. 2020;6(36).

  137. Lucchetti D, et al. Low-intensity pulsed ultrasound affects growth, differentiation, migration, and epithelial-to-mesenchymal transition of colorectal cancer cells. J Cell Physiol. 2020;235(6):5363–77.

    Article  CAS  PubMed  Google Scholar 

  138. Fite BZ, et al. Immune modulation resulting from MR-guided high intensity focused ultrasound in a model of murine breast cancer. Sci Rep. 2021;11(1):927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Swaminathan V, et al. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 2011;71(15):5075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lopez-Otin C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007;7(10):800–8.

    Article  CAS  PubMed  Google Scholar 

  141. Vaha-Koskela M, Hinkkanen A. Tumor restrictions to oncolytic virus. Biomedicines. 2014;2(2):163–94.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Bull C, et al. Sialic acids sweeten a tumor’s life. Cancer Res. 2014;74(12):3199–204.

    Article  PubMed  CAS  Google Scholar 

  143. Xiao H, et al. Precision glycocalyx editing as a strategy for cancer immunotherapy. Proc Natl Acad Sci U S A. 2016;113(37):10304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Thompson AE. JAMA patient page. The immune system. JAMA. 2015;313(16):1686.

    Article  PubMed  Google Scholar 

  145. Craik CS, Page MJ, Madison EL. Proteases as therapeutics. Biochem J. 2011;435(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  146. Zhou X, Yang G, Guan F. Biological functions and analytical strategies of sialic acids in tumor. Cells. 2020;9(2).

  147. Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007;7(4):255–66.

    Article  CAS  PubMed  Google Scholar 

  148. Alper J. Glycobiology. Turning sweet on cancer. Science. 2003;301(5630):159–60.

    Article  CAS  PubMed  Google Scholar 

  149. Naeim F. Principles of immunophenotyping. 2008.

  150. Stern-Ginossar N, Mandelboim O. An integrated view of the regulation of NKG2D ligands. Immunology. 2009;128(1):1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Petrey AC, de la Motte CA. Hyaluronan, a crucial regulator of inflammation. Front Immunol. 2014;5:101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Veiseh M, et al. Cellular heterogeneity profiling by hyaluronan probes reveals an invasive but slow-growing breast tumor subset. Proc Natl Acad Sci U S A. 2014;111(17):E1731–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Howells A, et al. Oncolytic viruses-interaction of virus and tumor cells in the battle to eliminate cancer. Front Oncol. 2017;7:195.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Singh PK, et al. Oncolytic viruses & their specific targeting to tumour cells. Indian J Med Res. 2012;136(4):571–84.

    PubMed  PubMed Central  Google Scholar 

  155. Guedan S, et al. Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther. 2010;18(7):1275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Cheema TA, et al. Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc Natl Acad Sci U S A. 2013;110(29):12006–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kiyokawa J, et al. Modification of extracellular matrix enhances oncolytic adenovirus immunotherapy in glioblastoma. Clin Cancer Res. 2021;27(3):889–902.

    Article  CAS  PubMed  Google Scholar 

  158. Heylmann D, et al. Sensitivity of CD3/CD28-stimulated versus non-stimulated lymphocytes to ionizing radiation and genotoxic anticancer drugs: key role of ATM in the differential radiation response. Cell Death Dis. 2018;9(11):1053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. van der Leun AM, Thommen DS, Schumacher TN. CD8(+) T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer. 2020;20(4):218–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Maccio A, et al. Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients. Sci Rep. 2020;10(1):6096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Winer A, Adams S, Mignatti P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol Cancer Ther. 2018;17(6):1147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cathcart JM, Cao J. MMP inhibitors: past, present and future. Front Biosci (Landmark Ed). 2015;20:1164–78.

    Article  Google Scholar 

  163. Bramhall SR, et al. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. J Clin Oncol. 2001;19(15):3447–55.

    Article  CAS  PubMed  Google Scholar 

  164. Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002;295(5564):2387–92.

    Article  CAS  PubMed  Google Scholar 

  165. Bramhall SR, et al. A double-blind placebo-controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer. Br J Cancer. 2002;87(2):161–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hirte H, et al. A phase III randomized trial of BAY 12–9566 (tanomastat) as maintenance therapy in patients with advanced ovarian cancer responsive to primary surgery and paclitaxel/platinum containing chemotherapy: a National Cancer Institute of Canada Clinical Trials Group Study. Gynecol Oncol. 2006;102(2):300–8.

    Article  CAS  PubMed  Google Scholar 

  167. Michael M, et al. Expression and prognostic significance of metalloproteinases and their tissue inhibitors in patients with small-cell lung cancer. J Clin Oncol. 1999;17(6):1802–8.

    Article  CAS  PubMed  Google Scholar 

  168. McKee TD, et al. Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res. 2006;66(5):2509–13.

    Article  CAS  PubMed  Google Scholar 

  169. Eikenes L, et al. Effect of collagenase and hyaluronidase on free and anomalous diffusion in multicellular spheroids and xenografts. Anticancer Res. 2010;30(2):359–68.

    CAS  PubMed  Google Scholar 

  170. Zhou H, et al. Hyaluronidase embedded in nanocarrier PEG shell for enhanced tumor penetration and highly efficient antitumor efficacy. Nano Lett. 2016;16(5):3268–77.

    Article  CAS  PubMed  Google Scholar 

  171. Zinger A, et al. Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano. 2019;13(10):11008–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ebelt ND, et al. Hyaluronidase-expressing salmonella effectively targets tumor-associated hyaluronic acid in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2020;19(2):706–16.

    Article  CAS  PubMed  Google Scholar 

  173. Discher DE, et al. Matrix mechanosensing: from scaling concepts in ’omics data to mechanisms in the nucleus, regeneration, and cancer. Annu Rev Biophys. 2017;46:295–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hinz B, Gabbiani G, Chaponnier C. The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol. 2002;157(4):657–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Diop-Frimpong B, et al. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci U S A. 2011;108(7):2909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Barker HE, et al. LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res. 2011;71(5):1561–72.

    Article  CAS  PubMed  Google Scholar 

  177. Davidson S, et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat Rev Immunol. 2021.

  178. Lampi MC, Reinhart-King CA. Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci Transl Med. 2018;10(422).

  179. Shinde AV, Humeres C, Frangogiannis NG. The role of alpha-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim Biophys Acta Mol Basis Dis. 2017;1863(1):298–309.

    Article  CAS  PubMed  Google Scholar 

  180. Caja L, et al. TGF-beta and the tissue microenvironment: relevance in fibrosis and cancer. Int J Mol Sci. 2018;19(5).

  181. Colak S, Ten Dijke P. Targeting TGF-beta signaling in cancer. Trends Cancer. 2017;3(1):56–71.

    Article  CAS  PubMed  Google Scholar 

  182. Akhurst RJ, Targeting TGF-beta signaling for therapeutic gain. Cold Spring Harb Perspect Biol. 2017;9(10).

  183. Murphy JE, et al. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial. JAMA Oncol. 2019;5(7):1020–7.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Principe DR, et al. TGF-beta: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst. 2014;106(2):djt369.

  185. Smith-Mungo LI, Kagan HM. Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol. 1998;16(7):387–98.

    Article  CAS  PubMed  Google Scholar 

  186. Leeming DJ, et al. A serological marker of the N-terminal neoepitope generated during LOXL2 maturation is elevated in patients with cancer or idiopathic pulmonary fibrosis. Biochem Biophys Rep. 2019;17:38–43.

    CAS  PubMed  Google Scholar 

  187. Rosin NL, et al. Disruption of collagen homeostasis can reverse established age-related myocardial fibrosis. Am J Pathol. 2015;185(3):631–42.

    Article  CAS  PubMed  Google Scholar 

  188. Bondareva A, et al. The lysyl oxidase inhibitor, beta-aminopropionitrile, diminishes the metastatic colonization potential of circulating breast cancer cells. PLoS One. 2009;4(5):e5620.

  189. Nilsson M, et al. Inhibition of lysyl oxidase and lysyl oxidase-like enzymes has tumour-promoting and tumour-suppressing roles in experimental prostate cancer. Sci Rep. 2016;6:19608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Smithen DA, et al. 2-Aminomethylene-5-sulfonylthiazole inhibitors of lysyl oxidase (LOX) and LOXL2 show significant efficacy in delaying tumor growth. J Med Chem. 2020;63(5):2308–24.

    Article  CAS  PubMed  Google Scholar 

  191. Benson AB 3rd, et al. A phase II randomized, double-blind, placebo-controlled study of simtuzumab or placebo in combination with gemcitabine for the first-line treatment of pancreatic adenocarcinoma. Oncologist. 2017;22(3):241-e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hecht JR, et al. A phase II, randomized, double-blind, placebo-controlled study of simtuzumab in combination with FOLFIRI for the second-line treatment of metastatic KRAS mutant colorectal adenocarcinoma. Oncologist. 2017;22(3):243-e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ferreira S, et al. LOXL2 inhibitors and breast cancer progression. Antioxidants (Basel). 2021;10(2).

  194. Wen Y, et al. Immunotherapy targeting fibroblast activation protein inhibits tumor growth and increases survival in a murine colon cancer model. Cancer Sci. 2010;101(11):2325–32.

    Article  CAS  PubMed  Google Scholar 

  195. Kohli AG, et al. Improving the distribution of Doxil(R) in the tumor matrix by depletion of tumor hyaluronan. J Control Release. 2014;191:105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Xia Q, et al. Anti-tumor effects of DNA vaccine targeting human fibroblast activation protein alpha by producing specific immune responses and altering tumor microenvironment in the 4T1 murine breast cancer model. Cancer Immunol Immunother. 2016;65(5):613–24.

    Article  CAS  PubMed  Google Scholar 

  197. Uchakina ON, et al. Inhibition of hyaluronic acid formation sensitizes chronic myelogenous leukemia to treatment with doxorubicin. Glycobiology. 2016;26(11):1171–9.

    CAS  PubMed  Google Scholar 

  198. Zhen Z, et al. Protein nanocage mediated fibroblast-activation protein targeted photoimmunotherapy to enhance cytotoxic T cell infiltration and tumor control. Nano Lett. 2017;17(2):862–9.

    Article  CAS  PubMed  Google Scholar 

  199. Zhang Y, et al. Near-infrared-light induced nanoparticles with enhanced tumor tissue penetration and intelligent drug release. Acta Biomater. 2019;90:314–23.

    Article  CAS  PubMed  Google Scholar 

  200. June CH. Adoptive T cell therapy for cancer in the clinic. J Clin Invest. 2007;117(6):1466–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12(4):269–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. He Q, et al. Targeting cancers through TCR-peptide/MHC interactions. J Hematol Oncol. 2019;12(1):139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Effern M, et al. Adoptive T cell therapy targeting different gene products reveals diverse and context-dependent immune evasion in melanoma. Immunity. 2020;53(3):564–80 e9.

  204. Sadelain M, Riviere I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer. 2003;3(1):35–45.

    Article  CAS  PubMed  Google Scholar 

  205. Rohaan MW, Wilgenhof S, Haanen J. Adoptive cellular therapies: the current landscape. Virchows Arch. 2019;474(4):449–61.

    Article  PubMed  Google Scholar 

  206. Zhou Y, et al. Challenges and opportunities of using adoptive T-cell therapy as part of an HIV Cure Strategy. J Infect Dis. 2021;223(Supplement_1):38–45.

  207. Subklewe M, von Bergwelt-Baildon M, Humpe A. Chimeric antigen receptor T cells: a race to revolutionize cancer therapy. Transfus Med Hemother. 2019;46(1):15–24.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Ma S, et al. Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci. 2019;15(12):2548–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Alcantara M, Du Rusquec P, Romano E. Current clinical evidence and potential solutions to increase benefit of CAR T-cell therapy for patients with solid tumors. Oncoimmunology. 2020;9(1):1777064.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Riley RS, et al. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18(3):175–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Finck A, Gill SI, June CH. Cancer immunotherapy comes of age and looks for maturity. Nat Commun. 2020;11(1):3325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ahmadzadeh M, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009;114(8):1537–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Isser A, Livingston NK, Schneck JP. Biomaterials to enhance antigen-specific T cell expansion for cancer immunotherapy. Biomaterials. 2021;268:120584.

  216. Fallacara A, et al. Hyaluronic acid in the third millennium. Polymers (Basel). 2018;10(7).

  217. Hickey JW, et al. Engineering an artificial T-cell stimulating matrix for immunotherapy. Adv Mater. 2019;31(23):e1807359.

  218. Gasteiger G, Ataide M, Kastenmuller W. Lymph node - an organ for T-cell activation and pathogen defense. Immunol Rev. 2016;271(1):200–20.

    Article  CAS  PubMed  Google Scholar 

  219. Fransson M, et al. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J Neuroinflammation. 2012;9:112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Zmievskaya E, et al. Application of CAR-T cell therapy beyond oncology: autoimmune diseases and viral infections. Biomedicines. 2021;9(1).

  221. Canavan JB, et al. Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn’s disease. Gut. 2016;65(4):584–94.

    Article  CAS  PubMed  Google Scholar 

  222. Aghajanian H, et al. Targeting cardiac fibrosis with engineered T cells. Nature. 2019;573(7774):430–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res. 2016;365(3):563–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Ghanta RK, et al. Immune-modulatory alginate protects mesenchymal stem cells for sustained delivery of reparative factors to ischemic myocardium. Biomater Sci. 2020;8(18):5061–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. MacKenna D, Summerour SR, Villarreal FJ. Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res. 2000;46(2):257–63.

    Article  CAS  PubMed  Google Scholar 

  226. Zegard A, et al. Myocardial fibrosis as a predictor of sudden death in patients with coronary artery disease. J Am Coll Cardiol. 2021;77(1):29–41.

    Article  PubMed  Google Scholar 

  227. Sun L, et al. Clinical efficacy and safety of anti-PD-1/PD-L1 inhibitors for the treatment of advanced or metastatic cancer: a systematic review and meta-analysis. Sci Rep. 2020;10(1):2083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Gong J, et al. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10(3):727–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Jiang Y, et al. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum Vaccin Immunother. 2019;15(5):1111–22.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Intlekofer AM, Thompson CB. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J Leukoc Biol. 2013;94(1):25–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Wu Y, et al. CTLA-4-B7 interaction is sufficient to costimulate T cell clonal expansion. J Exp Med. 1997;185(7):1327–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Dobosz P, Dzieciatkowski T. The intriguing history of cancer immunotherapy. Front Immunol. 2019;10:2965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.

    Article  CAS  PubMed  Google Scholar 

  235. Waitz R, Fasso M, Allison JP. CTLA-4 blockade synergizes with cryoablation to mediate tumor rejection. Oncoimmunology. 2012;1(4):544–6.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Duan Q, et al. Turning cold into hot: firing up the tumor microenvironment. Trends Cancer. 2020;6(7):605–18.

    Article  CAS  PubMed  Google Scholar 

  237. Ishihara J, et al. Matrix-binding checkpoint immunotherapies enhance antitumor efficacy and reduce adverse events. Sci Transl Med. 2017;9(415).

  238. Berraondo P, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120(1):6–15.

    Article  CAS  PubMed  Google Scholar 

  239. Lee S, Margolin K. Cytokines in cancer immunotherapy. Cancers (Basel). 2011;3(4):3856–93.

    Article  CAS  Google Scholar 

  240. Aziz N, et al. Stability of cytokines, chemokines and soluble activation markers in unprocessed blood stored under different conditions. Cytokine. 2016;84:17–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Momin N, et al. Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy. Sci Transl Med. 2019;11(498).

  242. Mansurov A, et al. Collagen-binding IL-12 enhances tumour inflammation and drives the complete remission of established immunologically cold mouse tumours. Nat Biomed Eng. 2020;4(5):531–43.

    Article  CAS  PubMed  Google Scholar 

  243. Murer P, Neri D. Antibody-cytokine fusion proteins: a novel class of biopharmaceuticals for the therapy of cancer and of chronic inflammation. N Biotechnol. 2019;52:42–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Viale DL, et al. Therapeutic improvement of a stroma-targeted CRAd by incorporating motives responsive to the melanoma microenvironment. J Invest Dermatol. 2013;133(11):2576–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Liang H, et al. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix. Sci Rep. 2016;6:18205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Ishihara J, et al. Targeted antibody and cytokine cancer immunotherapies through collagen affinity. Sci Transl Med. 2019;11(487).

  247. Ishihara J, et al. Improving efficacy and safety of agonistic anti-CD40 antibody through extracellular matrix affinity. Mol Cancer Ther. 2018;17(11):2399–411.

    Article  CAS  PubMed  Google Scholar 

  248. Li Y, et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nature Cancer. 2020;1(9):882–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Colazo JM, et al. Applied bioengineering in tissue reconstruction, replacement, and regeneration. Tissue Eng Part B Rev. 2019;25(4):259–90.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Shi J, et al. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10(9):3223–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Bitar D, Parvizi J. Biological response to prosthetic debris. World J Orthop. 2015;6(2):172–89.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Vegas AJ, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med. 2016;22(3):306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Sheikh Z, et al. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials (Basel). 2015;8(9):5671–701.

    Article  CAS  Google Scholar 

  254. Zandstra J, et al. Microsphere size influences the foreign body reaction. Eur Cell Mater. 2014;28:335–47.

    Article  CAS  PubMed  Google Scholar 

  255. Veiseh O, et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater. 2015;14(6):643–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Hotaling NA, et al. Biomaterial strategies for immunomodulation. Annu Rev Biomed Eng. 2015;17:317–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Gammon JM, Jewell CM. Engineering immune tolerance with biomaterials. Adv Healthc Mater. 2019;8(4):e1801419.

  258. Davis NE, et al. Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel. Biomaterials. 2012;33(28):6691–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Phelps EA, et al. Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes. Biomaterials. 2013;34(19):4602–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Blasi P, et al. Conformal polymer coatings for pancreatic islets transplantation. Int J Pharm. 2013;440(2):141–7.

    Article  CAS  PubMed  Google Scholar 

  261. Lee BR, et al. In situ formation and collagen-alginate composite encapsulation of pancreatic islet spheroids. Biomaterials. 2012;33(3):837–45.

    Article  CAS  PubMed  Google Scholar 

  262. Farina M, et al. Cell encapsulation: overcoming barriers in cell transplantation in diabetes and beyond. Adv Drug Deliv Rev. 2019;139:92–115.

    Article  CAS  PubMed  Google Scholar 

  263. Orive G, et al. Engineering a clinically translatable bioartificial pancreas to treat type I diabetes. Trends Biotechnol. 2018;36(4):445–56.

    Article  CAS  PubMed  Google Scholar 

  264. Ryan AJ, et al. Advances in polymeric islet cell encapsulation technologies to limit the foreign body response and provide immunoisolation. Curr Opin Pharmacol. 2017;36:66–71.

    Article  CAS  PubMed  Google Scholar 

  265. Vegas AJ, et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotechnol. 2016;34(3):345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Ernst AU, Wang LH, Ma M. Islet encapsulation. J Mater Chem B. 2018;6(42):6705–22.

    Article  CAS  PubMed  Google Scholar 

  267. Desai T, Shea LD. Advances in islet encapsulation technologies. Nat Rev Drug Discov. 2017;16(5):338–50.

    Article  CAS  PubMed  Google Scholar 

  268. Sun Z, et al. Hydrogel-based controlled drug delivery for cancer treatment: a review. Mol Pharm. 2020;17(2):373–91.

    CAS  PubMed  Google Scholar 

  269. Hwang J, Sullivan MO, Kiick KL. Targeted drug delivery via the use of ECM- mimetic materials. Front Bioeng Biotechnol. 2020;8:69.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Hu Q, et al. Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat Biomed Eng. 2021.

  271. Huang Z, et al. Enhanced photo/chemo combination efficiency against bladder tumor by encapsulation of DOX and ZnPC into in situ-formed thermosensitive polymer hydrogel. Int J Nanomedicine. 2018;13:7623–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Qi Y, et al. Injectable hexapeptide hydrogel for localized chemotherapy prevents breast cancer recurrence. ACS Appl Mater Interfaces. 2018;10(8):6972–81.

    Article  CAS  PubMed  Google Scholar 

  273. Leach DG, et al. STINGel: Controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy. Biomaterials. 2018;163:67–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Li Q, et al. Graphene-nanoparticle-based self-healing hydrogel in preventing postoperative recurrence of breast cancer. ACS Biomater Sci Eng. 2019;5(2):768–79.

    Article  CAS  PubMed  Google Scholar 

  275. Schiapparelli P, et al. Self-assembling and self-formulating prodrug hydrogelator extends survival in a glioblastoma resection and recurrence model. J Control Release. 2020;319:311–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the use of Biorender.com for generating the graphical abstract and both Figs. 1, 2, and 3 of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the analysis of literature and manuscript writing.

Corresponding author

Correspondence to Omid Veiseh.

Ethics declarations

Ethics approval and consent to participate

All the authors consent to participate.

Consent for publication

All authors consent to the publication of this manuscript.

Competing interests

OV declares financial interests as a paid consultant and/or equity holder in Sigilon Therapeutics, Pana Biotherapeutics, Auregen BioTherapeutics, Avenge Bio, and Establishment Labs.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghlara-Fotovat, S., Nash, A., Kim, B. et al. Targeting the extracellular matrix for immunomodulation: applications in drug delivery and cell therapies. Drug Deliv. and Transl. Res. 11, 2394–2413 (2021). https://doi.org/10.1007/s13346-021-01018-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-01018-0

Keywords

Navigation