Abstract
Corticosteroids remain the mainstay of the treatment for various ocular conditions affecting the ocular surface, anterior and posterior segments of the eye due to their anti-inflammatory, anti-oedematous, and anti-neovascularization properties. Prednisolone, prednisolone acetate, dexamethasone, triamcinolone acetonide, fluocinolone acetonide, and loteprednol etabonate are amongst the most widely used ophthalmic corticosteroids. Corticosteroids differ in their activity and potency in the eye due to their inherent pharmacological and pharmaceutical differences. Different routes and regimens are available for ocular administration of corticosteroids. Conventional topical application to the eye is the route of choice when targeting diseases affecting the ocular surface and anterior segment, while periocular, intravitreal, and suprachoroidal injections can be potentially effective for posterior segment diseases. Corticosteroid-induced intraocular pressure elevation and cataract formation remain the most significant local risks following topical as well as systemic corticosteroid administration. Invasive drug administration via intracameral, subconjunctival, and intravitreal injection can enhance ocular bioavailability and minimize dose and dosing frequency of administration, yet may exacerbate ocular side effects of corticosteroids. This review provides a critical appraisal of the ophthalmic uses of corticosteroid, routes of administration, drug delivery fundamentals and novel ocular implantable steroid delivery systems, factors influencing side effects, and future perspectives for ocular corticosteroid therapy.
Similar content being viewed by others
References
Dell SJ, et al. A controlled evaluation of the efficacy and safety of loteprednol etabonate in the prophylactic treatment of seasonal allergic conjunctivitis. Am J Ophthalmol. 1997;123(6):791–7.
Study TLEUU. Controlled evaluation of loteprednol etabonate and prednisolone acetate in the treatment of acute anterior uveitis. Am J Ophthalmol. 1999;127(5):537–44.
Pflugfelder SC, Tseng SC, Huang AJ. Non-preserved topical corticosteroid for treatment of dry eye, filamentary keratitis, and delayed tear clearance (or turnover), 2000, Google Patents.
Pimentel MA, et al. Assessment of the accuracy of using ICD-9 codes to identify uveitis, herpes zoster ophthalmicus, scleritis, and episcleritis. JAMA Ophthalmol. 2016;134(9):1001–6.
Munir WM, et al. Intravitreal triamcinolone for treatment of complicated proliferative diabetic retinopathy and proliferative vitreoretinopathy. Can J Ophthalmol. 2005;40(5):598–604.
Allergan I. OZURDEX®product information, I. Allergan, Editor 2014, Allergan, Inc.
Solomon SD, et al. Diabetic retinopathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(3):412–8.
Meredith TA, et al. Postinjection endophthalmitis in the comparison of age-related macular degeneration treatments trials (CATT). Ophthalmology. 2015;122(4):817–21.
Struck H, Bariszlovich A. Comparison of 0.1% dexamethasone phosphate eye gel (Dexagel) and 1% prednisolone acetate eye suspension in the treatment of post-operative inflammation after cataract surgery. Graefes Arch Clin Exp Ophthalmol. 2001;239(10):737–42.
Schwartz SG, et al. Update on corticosteroids for diabetic macular edema. Clin Ophthalmol. 2016;10:1723–30.
Haller JA. Intravitreal corticosteroids: a review of therapeutic and surgical applications. Retina Today. 2009;S1:1–15.
Ayalasomayajula SP, Ashton P, Kompella UB. Fluocinolone inhibits VEGF expression via glucocorticoid receptor in human retinal pigment epithelial (ARPE-19) cells and TNF-α–induced angiogenesis in chick chorioallantoic membrane (CAM). J Ocul Pharmacol Ther. 2009;25(2):97–104.
K Suresh P, Sah AK. Patent perspectives for corticosteroids based ophthalmic therapeutics. Recent Patents Drug Deliv Formul. 2014;8(3):206–23.
Tripathi RC, et al. Corticosteroids and glaucoma risk. Drugs Aging. 1999;15(6):439–50.
Abdelkader H, Alany R, Pierscieonek B. Age-related cataract and drug therapy: opportunities and challenges for topical antioxidant delivery to the lens. J Pharm Pharmacol. 67:537–50.
Carnahan MC, Goldstein DA. Ocular complications of topical, peri-ocular, and systemic corticosteroids. Curr Opin Ophthalmol. 2000;11(6):478–83.
Kwatra G, Mukhopadhyay S. Topical corticosteroids: pharmacology, in A treatise on topical corticosteroids in dermatology 2018, Springer p 11–22.
Jóhannesson G, Stefánsson E, Loftsson T. Microspheres and nanotechnology for drug delivery, in Retinal Pharmacotherapeutics. 2016, Karger Publishers. p. 93–103.
Gan L, et al. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: improving preocular retention and ocular bioavailability. Int J Pharm. 2010;396(1–2):179–87.
Bhagat R, et al. Comparison of the release profile and pharmacokinetics of intact and fragmented dexamethasone intravitreal implants in rabbit eyes. J Ocul Pharmacol Ther. 2014;30(10):854–8.
Moffat AC, et al. Clarke’s analysis of drugs and poisons. Vol. 3. London: Pharmaceutical press; 2011.
Yang G, Ran Y, Yalkowsky SH. Prediction of the aqueous solubility: comparison of the general solubility equation and the method using an amended solvation energy relationship. J Pharm Sci. 2002;91(2):517–33.
Gao Y, et al. PLGA–PEG–PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug Dev Ind Pharm. 2010;36(10):1131–8.
Fialho SL, Da Silva-Cunha A. New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin Exp Ophthalmol. 2004;32(6):626–32.
Al-Muhammed J, et al. In-vivo studies on dexamethasone sodium phosphate liposomes. J Microencapsul. 1996;13(3):293–305.
Awan MA, et al. Penetration of topical and subconjunctival corticosteroids into human aqueous humour and its therapeutic significance. Br J Ophthalmol. 2009;93(6):708–13.
Papangkorn K, et al. A novel ocular drug delivery system of dexamethasone sodium phosphate for noninfectious uveitis treatment, in Advances in the Diagnosis and Management of Uveitis. 2018, IntechOpen.
Boone A, Hui A, Jones L. Uptake and release of dexamethasone phosphate from silicone hydrogel and group I, II, and IV hydrogel contact lenses. Eye & Contact Lens. 2009;35(5):260–7.
Ranch K, et al. Development of in situ ophthalmic gel of dexamethasone sodium phosphate and chloramphenicol: a viable alternative to conventional eye drops. J Appl Pharm Sci. 2017;7:101–8.
ElShaer A, et al. Nanoparticle-laden contact lens for controlled ocular delivery of prednisolone: formulation optimization using statistical experimental design. Pharmaceutics. 2016;8(2):14.
Hayton WL, Guttman DE, Levy G. Effect of complex formation on drug absorption XI: complexation of prednisone and prednisolone with dialkylpropionamides and its effect on prednisone transfer through an artificial lipoid barrier. J Pharm Sci. 1972;61(3):356–61.
Machatha SG, Yalkowsky SH. Comparison of the octanol/water partition coefficients calculated by ClogP®, ACDlogP and KowWin® to experimentally determined values. Int J Pharm. 2005;294(1–2):185–92.
Gaafar PM, et al. Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. J Liposome Res. 2014;24(3):204–15.
Katzer T, et al. Prednisolone-loaded nanocapsules as ocular drug delivery system: development, in vitro drug release and eye toxicity. J Microencapsul. 2014;31(6):519–28.
Diestelhorst M, et al. Effect of dexamethasone 0.1% and prednisolone acetate 1.0% eye drops on the blood-aqueous barrier after cataract surgery: a controlled randomized fluorophotometric study. Graefes Arch Clin Exp Ophthalmol. 1992;230(5):451–3.
Ibrahim SS, et al. Comparative effects of different cosurfactants on sterile prednisolone acetate ocular submicron emulsions stability and release. Colloids Surf B: Biointerfaces. 2009;69(2):225–31.
Yalkowsky SH, Valvani SC. Solubility and partitioning I: solubility of nonelectrolytes in water. J Pharm Sci. 1980;69(8):912–22.
Leibowitz HM, et al. Penetration of topically administered prednisolone acetate into the human aqueous humor. Am J Ophthalmol. 1977;83(3):402–6.
Elbialy NS, et al. Enhancement of the ocular therapeutic effect of prednisolone acetate by liposomal entrapment. J Biomed Nanotechnol. 2013;9(12):2105–16.
Malaekeh-Nikouei B, et al. Controlled release of prednisolone acetate from molecularly imprinted hydrogel contact lenses. J Appl Polym Sci. 2012;126(1):387–94.
Schoenwald R, Boltralik J. A bioavailability comparison in rabbits of two steroids formulated as high-viscosity gels and reference aqueous preparations. Invest Ophthalmol Vis Sci. 1979;18(1):61–6.
Block L, Patel R. Solubility and dissolution of triamcinolone acetonide. J Pharm Sci. 1973;62(4):617–21.
Tao Y, Jonas JB. Intravitreal triamcinolone. Ophthalmologica. 2011;225(1):1–20.
Jonas J, Kreissig I, Degenring R. Intraocular pressure after intravitreal injection of triamcinolone acetonide. Br J Ophthalmol. 2003;87(1):24–7.
Singh K, Mezei M. Liposomal ophthalmic drug delivery system I. Triamcinolone acetonide. Int J Pharm. 1983;16(3):339–44.
Jaffe GJ, et al. Safety and pharmacokinetics of an intraocular fluocinolone acetonide sustained delivery device. Invest Ophthalmol Vis Sci. 2000;41(11):3569–75.
Werawatganone P, et al. Solubilization of fluocinolone acetonide by cosolvents and surfactants for buccal solution preparation. Thai J Pharm Sci. 2018;42(2).
Kiddee W, et al. Intraocular pressure monitoring post intravitreal steroids: a systematic review. Surv Ophthalmol. 2013;58(4):291–310.
Jaffe GJ, et al. Fluocinolone acetonide implant (Retisert) for noninfectious posterior uveitis: thirty-four–week results of a multicenter randomized clinical study. Ophthalmology. 2006;113(6):1020–7.
Vafaei SY, et al. Controlled-release drug delivery system based on fluocinolone acetonide–cyclodextrin inclusion complex incorporated in multivesicular liposomes. Pharm Dev Technol. 2015;20(7):775–81.
Alberth M, et al. Lipophilicity, solubility and permeability of loteprednol etabonate: a novel, soft anti-inflammatory steroid. Aust J Biol Sci. 1991;2(2):115–25.
Comstock TL, DeCory HH. Advances in corticosteroid therapy for ocular inflammation: loteprednol etabonate. Int J Inflamm, 2012;2012.
Rajpal RK, et al. Efficacy and safety of loteprednol etabonate 0.5% gel in the treatment of ocular inflammation and pain after cataract surgery. J Cataract Refract Surg. 2013;39(2):158–67.
Pflugfelder SC, et al. A randomized, double-masked, placebo-controlled, multicenter comparison of loteprednol etabonate ophthalmic suspension, 0.5%, and placebo for treatment of keratoconjunctivitis sicca in patients with delayed tear clearance. Am J Ophthalmol. 2004;138(3):444–57.
Noh G, et al. Development and evaluation of a water soluble fluorometholone eye drop formulation employing polymeric micelle. Pharmaceutics. 2018;10(4):208.
Miyake K, et al. Nepafenac 0.1% versus fluorometholone 0.1% for preventing cystoid macular edema after cataract surgery. J Cataract Refract Surg. 2011;37(9):1581–8.
Jamal KN, Callanan DG. The role of difluprednate ophthalmic emulsion in clinical practice. Clin Ophthalmol. 2009;3:381.
Kimura M, et al. Compositions containing difluprednate. 2000, Google Patents.
Korenfeld M. Difluprednate: changing the landscape of ocular pharmacology. Expert Rev Ophthalmol. 2008;3(6):619–25.
Popper TL, et al. Structure-activity relationships of a series of novel topical corticosteroids. J Steroid Biochem. 1987;27(4–6):837–43.
He Y, et al. Structures and mechanism for the design of highly potent glucocorticoids. Cell Res. 2014;24(6):713–26.
Crim C, Pierre LN, Daley-Yates PT. A review of the pharmacology and pharmacokinetics of inhaled fluticasone propionate and mometasone furoate. Clin Ther. 2001;23(9):1339–54.
Salter M, et al. Pharmacological properties of the enhanced-affinity glucocorticoid fluticasone furoate in vitro and in an in vivo model of respiratory inflammatory disease. Am J Phys Lung Cell Mol Phys. 2007;293(3):L660–7.
Musson D, Bidgood A, Olejnik O. An in vitro comparison of the permeability of prednisolone, prednisolone sodium phosphate, and prednisolone acetate across the NZW rabbit cornea. J Ocul Pharmacol Ther. 1992;8(2):139–50.
Thakur A, Kadam RS, Kompella UB. Influence of drug solubility and lipophilicity on transscleral retinal delivery of six corticosteroids. Drug Metab Dispos. 2011;39(5):771–81.
Eliott D, Rao PK. Surgical management of intraocular inflammation and infection. 2013: JP Medical Ltd.
Salama AH, Mahmoud AA, Kamel R. A novel method for preparing surface-modified fluocinolone acetonide loaded PLGA nanoparticles for ocular use: in vitro and in vivo evaluations. AAPS PharmSciTech. 2016;17(5):1159–72.
Malclès A, et al. Safety of intravitreal dexamethasone implant (Ozurdex): the SAFODEX study. Incidence and risk factors of ocular hypertension. Retina. 2017;37(7):1352–9.
Kompella U, Kadam RS, Lee VHL. Recent advances in ophthalmic drug delivery. Ther Deliv. 2010;1:435–56.
Yang Y, et al. Intravitreal corticosteroids in diabetic macular edema: pharmacokinetic considerations. Retina. 2015;35(12):2440.
CAS-No, C.C., Bristol-Myers Squibb Company. 2001.
Arvas S, Ocakoglu O, Ozkan S. The capillary blood flow in ischaemic type central retinal vein occlusion: the effect of laser photocoagulation. Acta Ophthalmol Scand. 2002;80:490–4.
Chambers WA. Trivaris (triamcinolone acetonide injectable suspension) 80 mg/mL product information, I. Allergan, Editor 2008, Allergan, Inc.
YANG Y, et al. Intravitreal corticosteroids in diabetic macular edema. Retina. 2015;35:2440–9.
Chen TH, Hariprasad SM, Raiji V. Update on emerging steroid-based local treatments for noninfectious uveitis. Ophthal Surg, Lasers Imaging Retina. 2018;49(11):828–31.
Tripathi RC, et al. Corticosteroid treatment for inflammatory bowel disease in pediatric patients increases intraocular pressure. Gastroenterology. 1992;102(6):1957–61.
David D, Berkowitz J. Ocular effects of topical and systemic corticosteroids. Lancet. 1969;294(7612):149–51.
Florence AT, Attwood D. The solubility of drugs. In: Florence AT, Attwood D, editors. Physichochemical principles of pharmacy. London: MACMILLAN Press LTD; 1988. p. 153–82.
Chaudhari PD, U.S. DESAI. Formulation and evaluation of niosomal in situ gel of prednisolone sodium phosphate for ocular drug delivery. Int J Appl Pharm. 2019;11:97–116.
Chambless SL, Trocme S. Developments in ocular allergy. Curr Opin Allergy Clin Immunol. 2004;4(5):431–4.
Bielory L. Allergic and immunologic disorders of the eye. Part II: ocular allergy. J Allergy Clin Immunol. 2000;106(6):1019–32.
Abelson MB, Schaefer K. Conjunctivitis of allergic origin: immunologic mechanisms and current approaches to therapy. Surv Ophthalmol. 1993;38:115–32.
Woods AC. Clinical and experimental observation on the use of ACTH and cortisone in ocular inflammatory disease. Am J Ophthalmol. 1950;33(9):1325–51.
Villanueva JR, Villanueva LR, Navarro MG. Pharmaceutical technology can turn a traditional drug, dexamethasone into a first-line ocular medicine. A global perspective and future trends. Int J Pharm. 2017;516(1–2):342–51.
Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N Engl J Med. 2005;353(16):1711–23.
Jiang CL, et al. The novel strategy of glucocorticoid drug development via targeting nongenomic mechanisms. Steroids. 2015;102:27–31.
Stahn C, Buttgereit F. Genomic and nongenomic effects of glucocorticoids. Nat Rev Rheumatol. 2008;4(10):525.
Vandewalle J, et al. Therapeutic mechanisms of glucocorticoids. Trends Endocrinol Metab. 2018;29:42–54.
Zhang X, et al. Glucocorticoids: structure, signaling and molecular mechanisms in the treatment of diabetic retinopathy and diabetic macular edema. Curr Mol Med. 2014;14:376–84.
Idrees F, et al. A review of anterior segment dysgeneses. Surv Ophthalmol. 2006;51(3):213–31.
McGhee C. Pharmacokinetics of ophthalmic corticosteroids. Br J Ophthalmol. 1992;76(11):681.
Pan Q, et al. Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats. J Control Release. 2015;201:32–40.
Ciulla TA, et al. Corticosteroids in posterior segment disease: an update on new delivery systems and new indications. Curr Opin Ophthalmol. 2004;15(3):211–20.
Bachu R, et al. Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics. 2018;10(1):28.
Gaudana R, et al. Ocular drug delivery. AAPS J. 2010;12(3):348–60.
Baranowski P, Karolewicz B, Gajda M, Pluta J. Ophthalmic drug dosage forms: Characterisation and research methods. Sci World J. 2014(2014):1–14.
Guy YJ, Friedman DI. Suspension of loteprednol etabonate for ear, eye, or nose treatment. 1996, Google Patents.
Ahmed I. The noncorneal route in ocular drug delivery, in Ophthalmic drug delivery systems. 2003, CRC Press. p. 356–385.
Kompella U, Vooturi S, Kadam R. Topical ocular drug delivery, 2013, Google Patents.
Gunda S, et al. Barriers in ocular drug delivery, in Ocular Transporters in Ophthalmic Diseases and Drug Delivery. 2008, Springer. p. 399–413.
Lang JC, Stiemke MM. Biological barriers to ocular delivery. Ocular Therapeutics and Drug Delivery. A Multi-disciplinary Approach, 1995: p. 51–132.
Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharmacol Physiol. 2000;27(7):558–62.
Lang JC. Ocular drug delivery conventional ocular formulations. Adv Drug Deliv Rev. 1995;16(1):39–43.
Lee YH, Kompella UB, Lee VH. Systemic absorption pathways of topically applied beta adrenergic antagonists in the pigmented rabbit. Exp Eye Res. 1993:341–9.
Vooturi S, et al. Effect of particle size and viscosity of suspensions on topical ocular bioavailability of budesonide, a corticosteroid. J Ocul Pharmacol Ther. 2020;36:1–6.
Yang C-q, Sun W, Gu Y-s. A clinical study of the efficacy of topical corticosteroids on dry eye. J Zhejiang Univ Sci B. 2006;7(8):675–8.
Meehan K, Vollmer L, Sowka J. Intraocular pressure elevation from topical difluprednate use. Optometry-J Am Optometric Assoc. 2010;81(12):658–62.
Jones R, Rhee DJ. Corticosteroid-induced ocular hypertension and glaucoma: a brief review and update of the literature. Curr Opin Ophthalmol. 2006;17:163–7.
Abdelkader H, Alany RG. Controlled and continuous release ocular drug delivery systems: pros and cons. Curr Drug Deliv. 2012;9(4):421–30.
McCluskey PJ, Towle HM, Lightman S. Management of chronic uveitis. BMJ. 2000;320(7234):555–8.
Feiler DL, et al. Resolution of noninfectious uveitic cystoid macular edema with topical difluprednate. Retina. 2017;37(5):844–50.
Sherif A Gaballa OHEG, Moharram H, Abdelkader H. Preparation and evaluation of cubosomes/cubosomal gels for ocular delivery of beclomethasone dipropionate for management of uveitis. Pharmaceutics Researches, 2020.
Hamashige S, Potts AM. The penetration of cortisone and hydrocortisone into the ocular structures. Am J Ophthalmol. 1955;40(5):211–6.
TANIGUCHI K, et al. Efficacy of a liposome preparation of anti-inflammatory steroid as an ocular drug-delivery system. J Pharmacobio-Dynam. 1988;11(1):39–46.
Gaballa SA, El Garhy OH, Abdelkader H. Cubosomes: composition, preparation, and drug delivery applications. J Adv Biomed Pharm Sci. 2020;3(1):1–9.
Al-Amin M, et al. Dexamethasone loaded liposomes by thin-film hydration and microfluidic procedures: formulation challenges. Int J Mol Sci. 2020;21(5):1611.
Raizman M. Corticosteroid therapy of eye disease: fifty years later. Arch Ophthalmol. 1996;114(8):1000–1.
Hughes PM, et al. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005;57(14):2010–32.
Pepić I, et al. A nonionic surfactant/chitosan micelle system in an innovative eye drop formulation. J Pharm Sci. 2010;99(10):4317–25.
Galloway NR, et al.. Basic anatomy and physiology of the eye, in Common Eye Diseases and their Management. 2016, Springer. p. 7–16.
Cox WV, Kupferman A, Leibowitz HM. Topically applied steroids in corneal disease: II. The role of drug vehicle in stromal absorption of dexamethasone. Arch Ophthalmol. 1972;88(5):549–52.
Green K, DOWNS SJ. Prednisolone phosphate penetration into and through the cornea. Invest Ophthalmol Vis Sci. 1974;13(4):316–9.
Leibowitz HM, Kupferman A. Kinetics of topically administered prednisolone acetate: optimal concentration for treatment of inflammatory keratitis. Arch Ophthalmol. 1976;94(8):1387–9.
Flint GR, Morton DJ. Effect of derivatization of the bioavailability of ophthalmic steroids: development of an in vitro method of evaluation. Arch Ophthalmol. 1984;102(12):1808–9.
McGhee C, et al. Penetration of synthetic corticosteroids into human aqueous humour. Eye. 1990;4(3):526–30.
Kristinsson JK, et al. Dexamethasone-cyclodextrin-polymer co-complexes in aqueous eye drops. Aqueous humor pharmacokinetics in humans. Invest Ophthalmol Vis Sci. 1996;37(6):1199–203.
Becker B. Intraocular pressure response to topical corticosteroids. Invest Ophthalmol Vis Sci. 1965;4(2):198–205.
Hadayer A, Schaal S. Delivery of steroids into the eye for the treatment of macular edema. Exp Opin Drug Deliv. 2016;13(8):1083–91.
Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Exp Opin Drug Deliv. 2008;5(5):567–81.
Cunha-Vaz J. The blood–retinal barrier in retinal disease. J Blood–Retinal Barrier Retinal Dis 2009.
Waite D, et al. Posterior drug delivery via periocular route: challenges and opportunities. Ther Deliv. 2017;8(8):685–99.
Kaufman HE, et al. Effect of the herpes simplex virus genome on the response of infection to corticosteroids. Am J Ophthalmol. 1985;100(1):114–8.
Urban RC Jr, Cotlier E. Corticosteroid-induced cataracts. Surv Ophthalmol. 1986;31(2):102–10.
De Nijs R. Glucocorticoid-induced osteoporosis: a review on pathophysiology and treatment options. Minerva Med. 2008;99(1):23.
Eisenstadt W, Cohen E. Osteoporosis and compression fractures from prolonged cortisone and corticotropin therapy. Ann Allergy. 1955;13(3):252.
Boland EW. Nonspecific anti-inflammatory agents—some notes on their practical application, especially in rheumatic disorders. California Med. 1964;100(3):145.
Stanbury RM, Graham EM. Systemic corticosteroid therapy—side effects and their management. Br J Ophthalmol. 1998;82(6):704–8.
Livanou T, Ferriman D, James V. Recovery of hypothalamo-pituitary-adrenal function after corticosteroid therapy. Lancet. 1967;290(7521):856–9.
Buchman AL. Side effects of corticosteroid therapy. J Clin Gastroenterol. 2001;33(4):289–94.
Leopold IH, Kroman HS. Methyl-and fluoro-substituted prednisolones in the blood and aqueous humor of the rabbit: concentrations. AMA Arch Ophthalmol. 1960;63(6):943–7.
Hyndiuk RA, Reagan MG. Radioactive depot-corticosteroid penetration into monkey ocular tissue: I. Retrobulbar and systemic administration. Arch Ophthalmol. 1968;80(4):499–503.
Barza M. Factors affecting the intraocular penetration of antibiotics. The influence of route, inflammation, animal species and tissue pigmentation. Scand J Infect Dis Suppl. 1978;14:151–9.
Tchernitchiv A, et al. Glucocorticoid localization by radioautography in the rabbit eye following systemic administration of 3H-dexamethasone. Invest Ophthalmol Vis Sci. 1980;19(10):1231–6.
Hernandez M, et al. Corneal-conjunctival uptake of topical 3H-dexamethasone in the rabbit eye. Invest Ophthalmol Vis Sci. 1981;20(1):120–3.
Sherif Z, Pleyer U. Corticosteroids in ophthalmology: past–present–future. Ophthalmologica. 2002;216(5):305–15.
Yu W-K, et al. Ocular adnexal IgG4-related disease: clinical features, outcome, and factors associated with response to systemic steroids. Jpn J Ophthalmol. 2015;59(1):8–13.
Wakefield D, McCluskey P, Penny R. Intravenous pulse methylprednisolone therapy in severe inflammatory eye disease. Arch Ophthalmol. 1986;104(6):847–51.
Sulaiman RS, Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in the eye. Steroids. 2018;133:60–6.
McGhee CN, Dean S, Danesh-Meyer H. Locally administered ocular corticosteroids. Drug Saf. 2002;25(1):33–55.
Geroski DH, Edelhauser HF. Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev. 2001;52(1):37–48.
Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Exp Opin Drug Deliv. 2004;1(1):99–114.
Agban Y, et al. Depot formulations to sustain periocular drug delivery to the posterior eye segment. Drug Discov Today. 2019;24(8):1458–69.
Olsen TW, et al. Human sclera: thickness and surface area. Am J Ophthalmol. 1998;125(2):237–41.
Olsen TW, et al. Human scleral permeability. Effects of age, cryotherapy, transscleral diode laser, and surgical thinning. Invest Ophthalmol Vis Sci. 1995;36(9):1893–903.
Ambati J, et al. Diffusion of high molecular weight compounds through sclera. Invest Ophthalmol Vis Sci. 2000;41(5):1181–5.
Wen H, Hao J, Li SK. Influence of permeant lipophilicity on permeation across human sclera. Pharm Res. 2010;27(11):2446–56.
Janoria KG, et al. Novel approaches to retinal drug delivery. Exp Opin Drug Deliv. 2007;4(4):371–88.
Castellarin A, Pieramici DJ. Anterior segment complications following periocular and intraocular injections. Ophthalmol Clin N Am. 2004;17(4):583–90 vii.
Akduman L, et al. Treatment of persistent glaucoma secondary to periocular corticosteroids. Am J Ophthalmol. 1996;122(2):275–7.
Nozik RA. Orbital rim fat atrophy after repository periocular corticosteroid injection. Am J Ophthalmol. 1976;82(6):928–30.
Weijtens O, et al. Dexamethasone concentration in the subretinal fluid after a subconjunctival injection, a peribulbar injection, or an oral dose. Ophthalmology. 2000;107(10):1932–8.
Weijtens O, et al. High concentration of dexamethasone in aqueous and vitreous after subconjunctival injection. Am J Ophthalmol. 1999;128(2):192–7.
Kompella UB, Bandi N, Ayalasomayajula SP. Subconjunctival nano-and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci. 2003;44(3):1192–201.
Leibowitz HM, Kupferman A. Periocular injection of corticosteroids: an experimental evaluation of its role in the treatment of corneal inflammation. Arch Ophthalmol. 1977;95(2):311–4.
Conrad JM, Robinson JR. Mechanisms of anterior segment absorption of pilocarpine following subconjunctival injection in albino rabbits. J Pharm Sci. 1980;69(8):875–84.
Amrite AC, Edelhauser HF, Kompella UB. Modeling of corneal and retinal pharmacokinetics after periocular drug administration. Invest Ophthalmol Vis Sci. 2008;49(1):320–32.
Hosseini K, et al. Pharmacokinetic study of dexamethasone disodium phosphate using intravitreal, subconjunctival, and intravenous delivery routes in rabbits. J Ocul Pharmacol Ther. 2008;24(3):301–8.
McCartney H, et al. An autoradiographic study of the penetration of subconjunctivally injected hydrocortisone into the normal and inflamed rabbit eye. Invest Ophthalmol Vis Sci. 1965;4(3):297–302.
Holmberg BJ, Maggs DJ. The use of corticosteroids to treat ocular inflammation. Vet Clinics: Small Anim Pract. 2004;34(3):693–705.
Pendergast SD, Eliott D, Machemer R. Retinal toxic effects following inadvertent intraocular injection of Celestone Soluspan. Arch Ophthalmol. 1995;113(10):1230–1.
Fischer C. Granuloma formation associated with subconjunctival injection of a corticosteroid in dogs. J Am Vet Med Assoc. 1979;174(10):1086–8.
Herrero-Vanrell R, et al. Sustained back of the eye delivery following sub-tenon administration of dexamethasone-loaded PLGA microspheres in rabbits. Invest Ophthalmol Vis Sci. 2012;53(14):477.
Das D, Serasiya S, Misra D. Complications and safety profile of posterior sub-tenon triamcinolone injections in sclero-uveitis cases in a tertiary institute of northeast India. Adv Ophthalmol Vis Syst. 2018;8(6):231–2.
Lafranco Dafflon M, et al. Posterior sub-Tenon’s steroid injections for the treatment of posterior ocular inflammation: indications, efficacy and side effects. Graefes Arch Clin Exp Ophthalmol. 1999;237(4):289–95.
Cardillo JA, et al. Comparison of intravitreal versus posterior sub–Tenon’s capsule injection of triamcinolone acetonide for diffuse diabetic macular edema. Ophthalmology. 2005;112(9):1557–63.
Kim MW, et al. Effect of posterior subtenon triamcinolone acetonide injection on diabetic macular edema refractory to intravitreal bevacizumab injection. Korean J Ophthalmol. 2016;30(1):25–31.
Weiss JL, Deichman CB. A comparison of retrobulbar and periocular anesthesia for cataract surgery. Arch Ophthalmol. 1989;107(1):96–8.
Ripart J, et al. Peribulbar versus retrobulbar anesthesia for ophthalmic surgeryan anatomical comparison of extraconal and intraconal injections. Anesthesiology. 2001;94(1):56–62.
Herschler J. Intractable intraocular hypertension induced by repository triamcinolone acetonide. Am J Ophthalmol. 1972;74(3):501–4.
Olsen TW, et al. Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment. Am J Ophthalmol. 2006;142(5):777–787. e2.
Soiberman U, et al. Subconjunctival injectable dendrimer-dexamethasone gel for the treatment of corneal inflammation. Biomaterials. 2017;125:38–53.
Gillies MC, et al. Safety of an intravitreal injection of triamcinolone: results from a randomized clinical trial. Arch Ophthalmol. 2004;122(3):336–40.
Hussain N, et al. Combination therapy of intravitreal triamcinolone and photodynamic therapy with verteporfin for subfoveal choroidal neovascularization. Indian J Ophthalmol. 2006;54(4):247.
Hartman RR, Kompella UB. Intravitreal, subretinal, and suprachoroidal injections: evolution of microneedles for drug delivery. J Ocul Pharmacol Ther. 2018;34(1–2):141–53.
Olsen TW, et al. Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of bevacizumab in a porcine model. Invest Ophthalmol Vis Sci. 2011;52(7):4749–56.
Tetz M, Rizzo S, Augustin AJ. Safety of submacular suprachoroidal drug administration via a microcatheter: retrospective analysis of European treatment results. Ophthalmologica. 2012;227(4):183–9.
Gilger BC, et al. Long-term outcome after implantation of a suprachoroidal cyclosporine drug delivery device in horses with recurrent uveitis. Vet Ophthalmol. 2010;13(5):294–300.
Rai UDJ, et al. The suprachoroidal pathway: a new drug delivery route to the back of the eye. Drug Discov Today. 2015;20(4):491–5.
Seiler GS, et al. Effect and distribution of contrast medium after injection into the anterior suprachoroidal space in ex vivo eyes. Invest Ophthalmol Vis Sci. 2011;52(8):5730–6.
Clearside Biomedical, I. Clearside Biomedical revises NDA resubmission timeline and XIPERE™ commercial partnership with Bausch Health. 2020 [cited August 2020.
Edelhauser HF, et al. Intraocular distribution and targeting of triamcinolone acetonide suspension administered into the suprachoroidal space. Invest Ophthalmol Vis Sci. 2014;55(13):5259.
Goldstein DA, et al. Suprachoroidal corticosteroid administration: a novel route for local treatment of noninfectious uveitis. Translat Vision Sci Technol. 2016;5(6):14.
Patel SR, et al. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res. 2011;28(1):166–76.
Patel SR, et al. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci. 2012;53(8):4433–41.
Gilger BC, et al. Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles. Invest Ophthalmol Vis Sci. 2013;54(4):2483–92.
Kuriakose T, et al. Intracameral amphotericin B injection in the management of deep keratomycosis. Cornea. 2002;21(7):653–6.
Shah TJ, Conway MD, Peyman GA. Intracameral dexamethasone injection in the treatment of cataract surgery induced inflammation: design, development, and place in therapy. Clin Ophthalmol. 2018;12:2223.
Tan DT, et al. Randomized clinical trial of a new dexamethasone delivery system (Surodex) for treatment of post-cataract surgery inflammation. Ophthalmology. 1999;106(2):223–31.
Wang B, et al. Efficacy and safety of intracameral triamcinolone acetonide to control postoperative inflammation after phacotrabeculectomy. J Cataract Refract Surg. 2013;39(11):1691–7.
Simaroj P, Sinsawad P, Lekhanont K. Effects of intracameral triamcinolone and gentamicin injections following cataract surgery. J Med Assoc Thail. 2011;94(7):819.
Mamalis N, et al. Toxic anterior segment syndrome. J Cataract Refract Surg. 2006;32(2):324–33.
Cunningham MA, Edelman JL, Kaushal S. Intravitreal steroids for macular edema: the past, the present, and the future. Surv Ophthalmol. 2008;53(2):139–49.
Doshi RR, Bakri SJ, Fung AE. Intravitreal injection technique. in Seminars in ophthalmology. 2011. Taylor & Francis.
Mitra AK, Anand BS, Duvvuri S. Drug delivery to the eye. Adv Organ Biol. 2005;10:307–51.
Durairaj C, et al. Prediction of vitreal half-life based on drug physicochemical properties: quantitative structure–pharmacokinetic relationships (QSPKR). Pharm Res. 2009;26(5):1236.
Beer PM, et al. Intraocular concentration and pharmacokinetics of triamcinolone acetonide after a single intravitreal injection. Ophthalmology. 2003;110(4):681–6.
Graham RO, Peyman GA. Intravitreal injection of dexamethasone: treatment of experimentally induced endophthalmitis. Arch Ophthalmol. 1974;92(2):149–54.
Tano Y, Chandler D, Machemer R. Treatment of intraocular proliferation with intravitreal injection of triamcinolone acetonide. Am J Ophthalmol. 1980;90(6):810–6.
Mansoor S, Kuppermann BD, Kenney MC. Intraocular sustained-release delivery systems for triamcinolone acetonide. Pharm Res. 2009;26(4):770–84.
Zacharias LC, et al. Assessment of the differences in pharmacokinetics and pharmacodynamics between four distinct formulations of triamcinolone acetonide. Retina. 2013;33(3):522–31.
Kuppermann BD, Zacharias LC, Kenney MC. Steroid differentiation: the safety profile of various steroids on retinal cells in vitro and their implications for clinical use (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 2014;112:116.
Thackaberry EA, et al. The safety evaluation of long-acting ocular delivery systems. Drug Discov Today. 2019;24(8):1539–50.
Razeghinejad MR, Katz LJ. Steroid-induced iatrogenic glaucoma. Ophthalmic Res. 2012;47(2):66–80.
Lee D. Intraocular implants for the treatment of autoimmune uveitis. J Funct Biomater. 2015;6(3):650–66.
Chang-Lin J-E, et al. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Invest Ophthalmol Vis Sci. 2011;52(1):80–6.
Haghjou N, Soheilian M, Abdekhodaie MJ. Sustained release intraocular drug delivery devices for treatment of uveitis. J Ophthalmic Vision Res. 2011;6(4):317.
Cao Y, et al. Recent advances in intraocular sustained-release drug delivery devices. Drug Discov Today. 2019;24(8):1694–700.
Jaffe GJ, et al. Fluocinolone acetonide sustained drug delivery device to treat severe uveitis. Ophthalmology. 2000;107(11):2024–33.
Driot J-Y, et al. Ocular pharmacokinetics of fluocinolone acetonide after Retisert™ intravitreal implantation in rabbits over a 1-year period. J Ocul Pharmacol Ther. 2004;20(3):269–75.
Alimera Sciences, I, ILUVIEN® (fluocinolone acetonide intravitreal implant) 0.19 mg product information, I. Alimera Sciences, Editor 2019, Alimera Sciences, Inc.
Kane FE, Green KE. Ocular pharmacokinetics of fluocinolone acetonide following Iluvien implantation in the vitreous humor of rabbits. J Ocul Pharmacol Ther. 2015;31(1):11–6.
Sanford M. Fluocinolone acetonide intravitreal implant (Iluvien®). Drugs. 2013;73(2):187–93.
Parekh A, et al. Risk factors associated with intraocular pressure increase in patients with uveitis treated with the fluocinolone acetonide implant. JAMA Ophthalmol. 2015;133(5):568–73.
Cholkar K, et al. Novel strategies for anterior segment ocular drug delivery. J Ocul Pharmacol Ther. 2013;29(2):106–23.
Tamura H, et al. Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina. Invest Ophthalmol Vis Sci. 2005;46(4):1440–4.
Peeters L, et al. Vitreous: a barrier to nonviral ocular gene therapy. Invest Ophthalmol Vis Sci. 2005;46(10):3553–61.
Thakur SS, et al. Intravitreal drug delivery in retinal disease: are we out of our depth? Exp Opin Drug Deliv. 2014;11(10):1575–90.
Thakur A, Kadam R, Kompella UB. Trabecular meshwork and lens partitioning of corticosteroids: implications for elevated intraocular pressure and cataracts. Arch Ophthalmol. 2011;129(7):914–20.
Prata AI, Coimbra P, Pina ME. Preparation of dexamethasone ophthalmic implants: a comparative study of in vitro release profiles. Pharm Dev Technol. 2018;23(3):218–24.
Schmit-Eilenberger VK. A novel intravitreal fluocinolone acetonide implant (Iluvien®) in the treatment of patients with chronic diabetic macular edema that is insufficiently responsive to other medical treatment options: a case series. Clin Ophthalmol. 2015;9:801.
Abraldes MJ, Fernández M, Gómez-Ulla F. Intravitreal triamcinolone in diabetic retinopathy. Curr Diabetes Rev. 2009;5(1):18–25.
Renfro L, Snow JS. Ocular effects of topical and systemic steroids. Dermatol Clin. 1992;10(3):505–12.
Krupin T, et al. Uveitis in association with topically administered corticosteroid. Am J Ophthalmol. 1970;70(6):883–5.
Armaly MF. Effect of corticosteroids on intraocular pressure and fluid dynamics: III. Changes in visual function and pupil size during topical dexamethasone application. Arch Ophthalmol. 1964;71(5):636–44.
Miller D, Peczon JD, Whitworth CG. Corticosteroids and functions in the anterior segment of the eye. Am J Ophthalmol. 1965;59(1):31–4.
Fel A, Aslangul E, Le CJ. Eye and corticosteroid’s use. Presse Medicale (Paris, France: 1983). 2012;41(4):414–21.
Becker B. The side effects of corticosteroids. Invest Ophthalmol Vis Sci. 1964;3(5):492–7.
Haimovici R, et al. Risk factors for central serous chorioretinopathy: a case–control study. Ophthalmology. 2004;111(2):244–9.
Aulakh R, Singh S. Strategies for minimizing corticosteroid toxicity: a review. Indian J Pediatr. 2008;75(10):1067–73.
Salek SS, et al. Periocular triamcinolone acetonide injections for control of intraocular inflammation associated with uveitis. Ocul Immunol Inflamm. 2013;21(4):257–63.
Campochiaro PA, et al. Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmology. 2012;119(10):2125–32.
Goñi FJ, et al. Elevated intraocular pressure after intravitreal steroid injection in diabetic macular edema: monitoring and management. Ophthalmol Therapy. 2016;5(1):47–61.
Fracs RW, Fracs PB. Intravitreal triamcinolone and elevated intraocular pressure. Aust N Z J Ophthalmol. 1999;27(6):431–2.
Mansour A, et al. Periocular corticosteroids in diabetic papillopathy. Eye. 2005;19(1):45–51.
Jamrozy-Witkowska A, et al. Complications of intravitreal injections-own experience. Klin Ocz. 2011;113(4–6):127–31.
Gopal L, Bhende M, Sharma T. Vitrectomy for accidental intraocular steroid injection. Retina (Philadelphia, Pa). 1995;15(4):295–9.
Rahman I, Ataullah S. Retrobulbar hemorrhage after sub-Tenon’s anesthesia. J Cataract Refract Surg. 2004;30(12):2636–7.
Purdy EP, Ajimal GS. Vision loss after lumbar epidural steroid injection. Anesth Analg. 1998;86(1):119–22.
Fogla R, Rao SK, Biswas J. Avoiding conjunctival necrosis after periocular depot corticosteroid injection. J Cataract Refract Surg. 2000;26(2):163–4.
Jusufbegovic D, Schaal S. Quiescent herpes simplex keratitis reactivation after intravitreal injection of dexamethasone implant. Retinal Cases Brief Reports. 2017;11(4):296–7.
Fassbender Adeniran JM, Jusufbegovic D, Schaal S. Common and rare ocular side-effects of the dexamethasone implant. Ocul Immunol Inflamm. 2017;25(6):834–40.
Smithen LM, et al. Intravitreal triamcinolone acetonide and intraocular pressure. Am J Ophthalmol. 2004;138(5):740–3.
Garrott HM, Walland MJ. Clinical case notes: glaucoma from topical corticosteroids to the eyelids. Clin Exp Ophthalmol. 2004;32(2):224–6.
Garbe E, et al. Inhaled and nasal glucocorticoids and the risks of ocular hypertension or open-angle glaucoma. Jama. 1997;277(9):722–7.
Beverstock A, Kelly A. Severe acute ocular hypertension following pulsed methylprednisolone for juvenile idiopathic arthritis. BMJ Case Reports CP. 2019;12(5):e229803.
Covell LL. Glaucoma induced by systemic steroid therapy. Am J Ophthalmol. 1958;45(1):108–9.
Fitzgerald LA, et al. Under pressure: an ocular complication of oral corticosteroid therapy. BMJ Case Reports. 2012;2012:bcr2012006955.
Armaly MF. The heritable nature of dexamethasone-induced ocular hypertension. Arch Ophthalmol. 1966;75(1):32–5.
Armaly M, Becker B. Intraocular pressure response to topical corticosteroids. in Fed Proc 1965.
Becker B, Hahn KA. Topical corticosteroids and heredity in primary open-angle glaucoma. Am J Ophthalmol. 1964;57(4):543–51.
Armaly MF. Effect of corticosteroids on intraocular pressure and fluid dynamics: I. The effect of dexamethasone* in the normal eye. Arch Ophthalmol. 1963;70(4):482–91.
Becker B, Mills DW. Elevated intraocular pressure following corticosteroid eye drops. Jama. 1963;185(11):884–6.
Becker B, et al. Intraocular pressure and its response to topical corticosteroids in diabetes. Arch Ophthalmol. 1966;76(4):477–83.
Clark AF, et al. Dexamethasone-induced ocular hypertension in perfusion-cultured human eyes. Invest Ophthalmol Vis Sci. 1995;36(2):478–89.
Hernandez MR, et al. Glucocorticoid target cells in human outflow pathway: autopsy and surgical specimens. Invest Ophthalmol Vis Sci. 1983;24(12):1612–6.
Weinreb R, Cotlier E, Yue BY. The extracellular matrix and its modulation in the trabecular meshwork. Surv Ophthalmol. 1996;40(5):379–90.
Clark AF. Basic sciences in clinical glaucoma: steroids, ocular hypertension, and glaucoma. J Glaucoma. 1995;4(5):354-369.
Lewis D, Symons A, Ancill R. The stabilization-lysis action of anti-inflammatory steroids on lysosomes. J Pharm Pharmacol. 1970;22(12):902–8.
Kinoshita S, et al. Marked intraocular pressure response to instillation of corticosteroids in children. Am J Ophthalmol. 1991;112(4):450–4.
Spaeth GL, Rodrigues MM, Weinreb S. Steroid-induced glaucoma: A. Persistent elevation of intraocular pressure B Histopathological aspects. Trans Am Ophthalmol Soc. 1977;75:353.
Smith C. Corticosteroid glaucoma: a summary and review of the literature. Am J Med Sci. 1966;252:239–44.
Pleyer U, Ursell PG, Rama P. Intraocular pressure effects of common topical steroids for post-cataract inflammation: are they all the same? Ophthalmol Therapy. 2013;2:55–72.
Lam DS, et al. Ocular hypertensive and anti-inflammatory responses to different dosages of topical dexamethasone in children: a randomized trial. Clin Exp Ophthalmol. 2005;33(3):252–8.
Kwok AK, et al. Ocular-hypertensive response to topical steroids in children. Ophthalmology. 1997;104(12):2112–6.
Mindel JS, et al. Comparative ocular pressure elevation by medrysone, fluorometholone, and dexamethasone phosphate. Arch Ophthalmol. 1980;98(9):1577–8.
Francois J. Corticosteroid glaucoma. Ann Ophthalmol. 1977;9(9):1075–80.
Weinreb R, et al. Acute effects of dexamethasone on intraocular pressure in glaucoma. Invest Ophthalmol Vis Sci. 1985;26(2):170–5.
Podos SM, Becker B, Morton WR. High myopia and primary open-angle glaucoma. Am J Ophthalmol. 1966;62(6):1039–43.
Gaston H, et al. Steroid responsiveness in connective tissue diseases. Br J Ophthalmol. 1983;67(7):487–90.
Muchtar S, et al. Ex-vivo permeation study of indomethacin from a submicron emulsion through albino rabbit cornea. J Control Release. 1997;44(1):55–64.
Cantrill HL, et al. Comparison of in vitro potency of corticosteroids with ability to raise intraocular pressure. Am J Ophthalmol. 1975;79(6):1012–7.
Nuyen B, Weinreb RN, Robbins SL. Steroid-induced glaucoma in the pediatric population. J Am Assoc Pediatr Ophthalmol Strabismus. 2017;21(1):1–6.
Donnenfeld ED, et al. A multicenter randomized controlled fellow eye trial of pulse-dosed difluprednate 0.05% versus prednisolone acetate 1% in cataract surgery. Am J Ophthalmol. 2011;152(4):609–617. e1.
Herschler J. Increased intraocular pressure induced by repository corticosteroids. Am J Ophthalmol. 1976;82(1):90–3.
Kalina PH, Erie JC, Rosenbaum L. Biochemical quantification of triamcinolone in subconjunctival depots. Arch Ophthalmol. 1995;113(7):867–9.
Whitcup SM, et al. Pharmacology of corticosteroids for diabetic macular edema. Invest Ophthalmol Vis Sci. 2018;59(1):1–12.
Parente L. Deflazacort: therapeutic index, relative potency and equivalent doses versus other corticosteroids. BMC Pharmacol Toxicol. 2017;18(1):1.
Becker B. Diabetes mellitus and primary open-angle glaucoma: the XXVII Edward Jackson Memorial Lecture. Am J Ophthalmol. 1971;71(1):1–16.
Wilson M. Epidemiology of chronic open-angle glaucoma. Glaucomas. 1996;2:753–68.
Haas JS, Nootens RH. Glaucoma secondary to benign adrenal adenoma. Am J Ophthalmol. 1974;78(3):497–500.
Huschle O, et al. Glaucoma in central hypothalamic-hypophyseal Cushing syndrome. Fortschritte der Ophthalmologie: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 1990;87(5):453–6.
Stárka L, Hampl R, Obenberger J. Corticosterone in the aqueous humour of the rabbit eye. J Steroid Biochem. 1972;3(1):39–42.
Starka L, et al. The role of corticosteroids in the homeostasis of the eye. J Steroid Biochem. 1986;24(1):199–205.
Tielsch JM, et al. Racial variations in the prevalence of primary open-angle glaucoma: the Baltimore Eye Survey. Jama. 1991;266(3):369–74.
Opatowsky I, et al. Intraocular pressure elevation associated with inhalation and nasal corticosteroids. Ophthalmology. 1995;102(2):177–9.
Spiliotopoulos C, et al. The effect of nasal steroid administration on intraocular pressure. Ear Nose Throat J. 2007;86(7):394–5.
Katsushima H. Corticosteroid-induced glaucoma following treatment of the periorbital region. Nippon Ganka Gakkai Zasshi. 1995;99(2):238–43.
Cubey RB. Glaucoma following the application of corticosteroid to the skin of the eyelids. Br J Dermatol. 1976;95(2):207–8.
Rosenblum C, Dengler RE, Geoffroy RF. Ocular absorption of dexamethasone phosphate disodium by the rabbit. Arch Ophthalmol. 1967;77(2):234–7.
Campochiaro PA, et al. Sustained ocular delivery of fluocinolone acetonide by an intravitreal insert. Ophthalmology. 2010;117(7):1393–1399. e3.
Black RL, et al. Posterior subcapsular cataracts induced by corticosteroids in patients with rheumatoid arthritis. Jama. 1960;174(2):166–71.
Karim A, Jacob T, Thompson G. The human lens epithelium; morphological and ultrastructural changes associated with steroid therapy. Exp Eye Res. 1989;48(2):215–24.
Shun-Shin GA, et al. Dynamic nature of posterior subcapsular cataract. Br J Ophthalmol. 1989;73(7):522–7.
Jobling AI, Augusteyn RC. What causes steroid cataracts? A review of steroid-induced posterior subcapsular cataracts. Clin Exp Optom. 2002;85(2):61–75.
Bodor N, Buchwald P. Ophthalmic drug design based on the metabolic activity of the eye: soft drugs and chemical delivery systems. AAPS J. 2005;7(4):E820–33.
Bucala R, et al. Glucocorticoid-lens protein adducts in experimentally induced steroid cataracts. Exp Eye Res. 1985;40(6):853–63.
Bucala R, et al. Nonenzymatic modification of lens crystallins by prednisolone induces sulfhydryl oxidation and aggregate formation: in vitro and in vivo studies. Exp Eye Res. 1985;41(3):353–63.
Flach A, Jaffe N, Akers W. The effect of ketorolac tromethamine in reducing postoperative inflammation: double-mask parallel comparison with dexamethasone. Ann Ophthalmol. 1989;21(11):407–11.
Harding JJ. The lens: development, proteins, metabolism and cataract. Eye. 1984;1:207–492.
Hanania NA, Chapman KR, Kesten S. Adverse effects of inhaled corticosteroids. Am J Med. 1995;98(2):196–208.
Garbe E, Suissa S, LeLorier J. Association of inhaled corticosteroid use with cataract extraction in elderly patients. Jama. 1998;280(6):539–43.
Bilgihan K, et al. Fluorometholone-Lnduced cataract after photoref ractive keratectomy. Ophthalmologica. 1997;211(6):394–6.
Deshmukh C. Minimizing side effects of systemic corticosteroids in children. Indian J Dermatol Venereol Leprol. 2007;73(4):218.
Ohta Y, et al. Anticataract action of vitamin E: its estimation using an in vitro steroid cataract model. Ophthal Lit. 1997;1(50):21.
Abdelkader H, et al. On the anticataractogenic effects of L-carnosine: is it best described as an antioxidant, metal-chelating agent or glycation inhibitor? Oxidative Med Cell Longev. 2016;2016:3240261.
Samadi A. Steroid-induced cataract. In: Levin LA, Albert DM, editors. Ocular Disease: Mechanism and Management. USA: SAUNDERS, Elsevier; 2010. p. 250–7.
Hengge UR, et al. Adverse effects of topical glucocorticosteroids. J Am Acad Dermatol. 2006;54(1):1–15.
Moisseiev E, Loewenstein A. Drug delivery to the posterior segment of the eye, in Macular Edema. 2017, Karger Publishers. p. 87–101.
Koay P. The emerging roles of topical non-steroidal anti-inflammatory agents in ophthalmology. Br J Ophthalmol. 1996;80(5):480.
Othenin-Girard P, et al. Dexamethasone versus diclofenac sodium eyedrops to treat inflammation after cataract surgery. J Cataract Refract Surg. 1994;20(1):9–12.
Abdelkader H, et al. Cyclodextrin enhances corneal tolerability and reduces ocular toxicity caused by diclofenac. Oxidative Med Cell Longev. 2018;2018:1–14.
Pereira F, et al. Systemic absortion and adverse effects of topical ocular use of ketorolac tromethamine and sodium diclofenac in New Zealand rabbits for 90 days. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 2019;71(6):1865–72.
Fukushima A, et al. Therapeutic effects of 0.1% tacrolimus eye drops for refractory allergic ocular diseases with proliferative lesion or corneal involvement. Br J Ophthalmol. 2014;98:1023–7.
Eljarrat-Binstock E, Domb AJ. Iontophoresis: a non-invasive ocular drug delivery. J Control Release. 2006;110(3):479–89.
Kompella UB, et al. Ocular drug delivery: nanotechnology, physical and chemical methods, vitreous drug binding, and aging eye. J Ocular Pharmacol Ther, 2019.
Patane MA, et al. Ocular iontophoresis for drug delivery. Retina Today. 2011;6:64–6.
Patane M, et al. Randomized, double-masked study of four iontophoresis dose levels of EGP-437 in non-infectious anterior segment uveitis subjects. Invest Ophthalmol Vis Sci. 2010;51(13):5263.
Ocular Therapeutix. Dextenza. 2016 [cited Accessed 20 July 2020.; Available from: http://www.ocutx.com/pipeline/dexamethasone-punctum-plug.
Bodor N, Shek E, Higuchi T. Improved delivery through biological membranes. 1. Synthesis and properties of 1-methyl-1, 6-dihydropyridine-2-carbaldoxime, a pro-drug of N-methylpyridinium-2-carbaldoxime chloride. J Med Chem. 1976;19(1):102–7.
Druzgala P, Wu W-M, Bodor N. Ocular absorption and distribution of loteprednol etabonate, a soft steroid, in rabbit eyes. Curr Eye Res. 1991;10(10):933–7.
Samir A, et al. Development of simultaneous quantification method of loteprednol etabonate (LE) and its acidic metabolites, and analysis of LE metabolism in rat. Xenobiotica. 2019;49(5):569–76.
Liu RF, et al. Efficacy of olopatadine hydrochloride 0.1%, emedastine difumarate 0.05%, and loteprednol etabonate 0.5% for Chinese children with seasonal allergic conjunctivitis: a randomized vehicle-controlled study. in International forum of allergy & rhinology. 2017. Wiley Online Library.
Shulman DG, et al. A randomized, double-masked, placebo-controlled parallel study of loteprednol etabonate 0.2% in patients with seasonal allergic conjunctivitis. Ophthalmology. 1999;106(2):362–9.
Comstock TL, Sheppard JD. Loteprednol etabonate for inflammatory conditions of the anterior segment of the eye: twenty years of clinical experience with a retrometabolically designed corticosteroid. Expert Opin Pharmacother. 2018;19(4):337–53.
Lane SS, Holland EJ. Loteprednol etabonate 0.5% versus prednisolone acetate 1.0% for the treatment of inflammation after cataract surgery. J Cataract Refract Surg. 2013;39(2):168–73.
Glogowski S, et al. Prolonged exposure to loteprednol etabonate in human tear fluid and rabbit ocular tissues following topical ocular administration of lotemax gel, 0.5%. J Ocul Pharmacol Ther. 2014;30(1):66–73.
Lomholt JA, Møller JK, Ehlers N. Prolonged persistence on the ocular surface of fortified gentamicin ointment as compared to fortified gentamicin eye drops. Acta Ophthalmol Scand. 2000;78(1):34–6.
Flach AJ. Topical nonsteroidal antiinflammatory drugs in ophthalmology. Int Ophthalmol Clin. 2002;42(1):1–11.
O’Brien T. Emerging guidelines for use of NSAID therapy to optimize cataract surgery patient care. Curr Med Res Opin. 2005;21(7):1131–7.
Cho H, Wolf KJ, Wolf EJ. Management of ocular inflammation and pain following cataract surgery: focus on bromfenac ophthalmic solution. Clin Ophthalmol. 2009;3:199.
Endo N, et al. Efficacy of bromfenac sodium ophthalmic solution in preventing cystoid macular oedema after cataract surgery in patients with diabetes. Acta Ophthalmol. 2010;88(8):896–900.
Brennan K, Brown R, Roberts C. A comparison of topical non-steroidal anti-inflammatory drugs to steroids for control of post cataract inflammation. Insight. 1993;18(1):8–9 11.
Duan P, Liu Y, Li J. The comparative efficacy and safety of topical non-steroidal anti-inflammatory drugs for the treatment of anterior chamber inflammation after cataract surgery: a systematic review and network meta-analysis. Graefes Arch Clin Exp Ophthalmol. 2017;255(4):639–49.
Lane SS, et al. Nepafenac ophthalmic suspension 0.1% for the prevention and treatment of ocular inflammation associated with cataract surgery. J Cataract Refract Surg. 2007;33(1):53–8.
Gieser D, et al. Flurbiprofen and intraocular pressure. Ann Ophthalmol. 1981;13(7):831–3.
Ayalasomayajula SP, Kompella UB. Celecoxib, a selective cyclooxygenase-2 inhibitor, inhibits retinal vascular endothelial growth factor expression and vascular leakage in a streptozotocin-induced diabetic rat model. Eur J Pharmacol. 2003;458(3):283–9.
Ayalasomayajula SP, Amrite AC, Kompella UB. Inhibition of cyclooxygenase-2, but not cyclooxygenase-1, reduces prostaglandin E2 secretion from diabetic rat retinas. Eur J Pharmacol. 2004;498(1–3):275–8.
Amrite AC, et al. Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Invest Ophthalmol Vis Sci. 2006;47(3):1149–60.
Shoughy SS. Topical tacrolimus in anterior segment inflammatory disorders. Eye Vision. 2017;4(1):7.
Ames P, Galor A. Cyclosporine ophthalmic emulsions for the treatment of dry eye: a review of the clinical evidence. Clin Investig (Lond). 2015;5:267–85.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gaballa, S.A., Kompella, U.B., Elgarhy, O. et al. Corticosteroids in ophthalmology: drug delivery innovations, pharmacology, clinical applications, and future perspectives. Drug Deliv. and Transl. Res. 11, 866–893 (2021). https://doi.org/10.1007/s13346-020-00843-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13346-020-00843-z