Skip to main content

Advertisement

Log in

Cranberry extract-based formulations for preventing bacterial biofilms

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Generating formulations for the delivery of a mixture of natural compounds extracted from natural sources is a challenge because of unknown active and inactive ingredients and possible interactions between them. As one example, natural cranberry extracts have been proposed for the prevention of biofilm formation on dental pellicle or teeth. However, such extracts may contain phenolic acids, flavonol glycosides along with other constituents like coumaroyl iridoid glycosides, flavonoids, alpha-linolenic acid, n-6 (or n-3) fatty acids, and crude fiber. Due to the presence of a variety of compounds, determining which molecules (and how many molecules) are essential for preventing biofilm growth is nontrivial to ascertain. Therefore, a formulation that could contain natural, unrefined, cranberry extract (with all its constituent compounds) at high loading would be ideal. Accordingly, we have generated several candidate formulations including poly(lactic-co-glycolic) acid (PLGA)-based microencapsulation of cranberry extract (CE15) as well as formulations including stearic acid along with polyvinylpyrrolidone (PVP) or Ethyl lauroyl arginate (LAE) complexed with cranberry extracts (CE15). We found that stearic acid in combination with PVP or LAE as excipients led to higher loading of the active and inactive compounds in CE15 as compared with a PLGA microencapsulation and also sustained release of CE15 in a tunable manner. Using this method, we have been able to generate two successful formulations (one preventative based, one treatment based) that effectively inhibit biofilm growth when incubated with saliva. In addition to cranberry extract, this technique could also be a promising candidate for other natural extracts to form controlled release systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. del Pozo JL, Patel R. The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther. Wiley-Blackwell. 2007;82:204–9.

    Article  PubMed  CAS  Google Scholar 

  2. Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. Nature Publishing Group. 2010;8:623–33.

    Article  CAS  PubMed  Google Scholar 

  3. Horev B, Klein MI, Hwang G, Li Y, Kim D, Koo H, et al. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. ACS Nano. American Chemical Society. 2015;9:2390–404.

  4. Baehni PC, Takeuchi Y. Anti-plaque agents in the prevention of biofilm-associated oral diseases. Oral Dis. 2003;9(Suppl 1):23–9.

    Article  PubMed  Google Scholar 

  5. Kouidhi B, Al Qurashi YMA, Chaieb K. Drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment. Microb Pathog. Academic Press. 2015;80:39–49.

    Article  CAS  PubMed  Google Scholar 

  6. Zaura-Arite E, van Marle J, ten Cate JM. Confocal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J Dent Res. 2001;80:1436–40.

    Article  CAS  PubMed  Google Scholar 

  7. O’Neill JF, Hope CK, Wilson M. Oral bacteria in multi-species biofilms can be killed by red light in the presence of toluidine blue. Lasers Surg Med. Wiley-Blackwell. 2002;31:86–90.

    Article  PubMed  Google Scholar 

  8. Altman H, Steinberg D, Porat Y, Mor A, Fridman D, Friedman M, et al. In vitro assessment of antimicrobial peptides as potential agents against several oral bacteria. J Antimicrob Chemother. Oxford University Press. 2006;58:198–201.

  9. Tempera G, Corsello S, Genovese C, Caruso FE, Nicolosi D. Inhibitory activity of cranberry extract on the bacterial adhesiveness in the urine of women: an ex-vivo study. Int J Immunopathol Pharmacol. 2010;23:611–8.

    Article  CAS  PubMed  Google Scholar 

  10. Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut. 2015;64:872–83.

    Article  PubMed  CAS  Google Scholar 

  11. Howell AB, Reed JD, Krueger CG, Winterbottom R, Cunningham DG, Leahy M. A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry. Pergamon. 2005;66:2281–91.

    Article  CAS  PubMed  Google Scholar 

  12. LaPlante KL, Sarkisian SA, Woodmansee S, Rowley DC, Seeram NP. Effects of cranberry extracts on growth and biofilm production of Escherichia coli and Staphylococcus species. Phyther Res. Wiley-Blackwell. 2012;26:1371–4.

    Article  CAS  Google Scholar 

  13. Huang Y, Nikolic D, Pendland S, Doyle BJ, Locklear TD, Mahady GB. Effects of cranberry extracts and ursolic acid derivatives on P-fimbriated Escherichia coli , COX-2 activity, pro-inflammatory cytokine release and the NF-κβ transcriptional response in vitro. Pharm Biol. Taylor & Francis. 2009;47:18–25.

    Article  CAS  PubMed  Google Scholar 

  14. Duarte S, Gregoire S, Singh AP, Vorsa N, Schaich K, Bowen WH, et al. Inhibitory effects of cranberry polyphenols on formation and acidogenicity of Streptococcus mutans biofilms. FEMS Microbiol Lett. Oxford University Press. 2006;257:50–6.

  15. Yamanaka A, Kimizuka R, Kato T, Okuda K. Inhibitory effects of cranberry juice on attachment of oral streptococci and biofilm formation. Oral Microbiol Immunol. Wiley/Blackwell (10.1111). 2004;19:150–4.

    Article  CAS  PubMed  Google Scholar 

  16. Nergård C, Solhaug V. Tranebær til forebygging av residiverende urinveisinfeksjoner [Cranberries for prevention of recurrent urinary tract infections]. Tidsskr Den Nor legeforening. 2009;129:303–4.

    Article  Google Scholar 

  17. Head KA. Natural approaches to prevention and treatment of infections of the lower urinary tract. Altern Med Rev. 2008;13:227–44.

  18. Hooton TM. Recurrent urinary tract infection in women. Int J Antimicrob Agents. Elsevier. 2001;17:259–68.

    Article  CAS  PubMed  Google Scholar 

  19. Jepson RG, Williams G, Craig JC. Cranberries for preventing urinary tract infections: Cochrane Database Syst Rev. John Wiley & Sons, Ltd; 2012.

  20. Avila-Funes JA. Comments to the manuscript: does cranberry juice have bacteriostatic activity? Rev Investig Clin. 57:822 author reply 823-4.

  21. Lee YL, Owens J, Thrupp L, Cesario TC. Does cranberry juice have antibacterial activity? JAMA. 2000;283:1691.

    Article  CAS  PubMed  Google Scholar 

  22. Lacombe A, Wu VCH, Tyler S, Edwards K. Antimicrobial action of the American cranberry constituents; phenolics, anthocyanins, and organic acids, against Escherichia coli O157:H7. Int J Food Microbiol. Elsevier. 2010;139:102–7.

    Article  CAS  PubMed  Google Scholar 

  23. Weiss EI, Kozlovsky A, Steinberg D, Lev-Dor R, Bar Ness Greenstein R, Feldman M, et al. A high molecular mass cranberry constituent reduces mutans streptococci level in saliva and inhibits in vitro adhesion to hydroxyapatite. FEMS Microbiol Lett Oxford University Press. 2004;232:89–92.

    Article  CAS  PubMed  Google Scholar 

  24. Gregoire S, Singh AP, Vorsa N, Koo H. Influence of cranberry phenolics on glucan synthesis by glucosyltransferases and Streptococcus mutans acidogenicity. J Appl Microbiol. Wiley/Blackwell (10.1111). 2007;103:1960–8.

    Article  CAS  PubMed  Google Scholar 

  25. Enache E, Chen Y. Survival of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes in cranberry juice concentrates at different °brix levels. J Food Prot. International Association for Food Protection. 2007;70:2072–7.

    Article  PubMed  Google Scholar 

  26. Rajeshwari HR, Dhamecha D, Jagwani S, Patil D, Hegde S, Potdar R, et al. Formulation of thermoreversible gel of cranberry juice concentrate: evaluation, biocompatibility studies and its antimicrobial activity against periodontal pathogens. Mater Sci Eng C Elsevier. 2017;75:1506–14.

    Article  CAS  Google Scholar 

  27. Baum BJ. Clinical science evaluation of stimulated parotid saliva flow rate in different age groups. J Dent Res. 1981;60:1292–6.

    Article  CAS  PubMed  Google Scholar 

  28. Edgar M, Dawes C, O’Mullane D. Saliva and oral health. 4th ed. London (UK): Stephen Hancocks Ltd. 2012.

  29. Heft MW, Baum BJ. Basic biological sciences unstimulated and stimulated parotid salivary flow rate in individuals of different ages. J Dent Res. 1984.

  30. Yamanaka A, Kimizuka R, Kato T, Okuda K. Inhibitory effects of cranberry juice on attachment of oral streptococci and biofilm formation. Oral Microbiol Immunol. John Wiley & Sons, Ltd (10.1111). 2004;19:150–4.

    Article  CAS  PubMed  Google Scholar 

  31. Diaz del Consuelo I, Falson F, Guy RH, Jacques Y. Ex vivo evaluation of bioadhesive films for buccal delivery of fentanyl. J Control Release Elsevier. 2007;122:135–40.

    Article  CAS  PubMed  Google Scholar 

  32. Smart JD, Kellaway IW, Worthington HEC. An in-vitro investigation of mucosa-adhesive materials for use in controlled drug delivery. J Pharm Pharmacol. John Wiley & Sons, Ltd. 1984;36:295–9.

    Article  CAS  PubMed  Google Scholar 

  33. Jones DS, Woolfson AD, Djokic J, Coulter WA. Development and mechanical characterization of bioadhesive semi-solid, polymeric systems containing tetracycline for the treatment of periodontal diseases. Pharm Res. Kluwer Academic Publishers-Plenum Publishers. 1996;13:1734–8.

    Article  CAS  PubMed  Google Scholar 

  34. Do MP, Neut C, Delcourt E, Seixas Certo T, Siepmann J, Siepmann F. In situ forming implants for periodontitis treatment with improved adhesive properties. Eur J Pharm Biopharm. Elsevier. 2014;88:342–50.

    Article  CAS  PubMed  Google Scholar 

  35. Aznar M, Gómez-Estaca J, Vélez D, Devesa V, Nerín C. Migrants determination and bioaccessibility study of ethyl lauroyl arginate (LAE) from a LAE based antimicrobial food packaging material. Food Chem Toxicol. 2013;56:363–70.

    Article  CAS  PubMed  Google Scholar 

  36. Woodcock NH, Hammond BH, Ralyea RD, Boor KJ. Short communication: nalpha-lauroyl-L-arginine ethylester monohydrochloride reduces bacterial growth in pasteurized milk. J Dairy Sci. 2009;92:4207–10.

    Article  CAS  PubMed  Google Scholar 

  37. Gallob JT, Lynch M, Charles C, Ricci-Nittel D, Mordas C, Gambogi R, et al. A randomized trial of ethyl lauroyl arginate-containing mouthrinse in the control of gingivitis. J Clin Periodontol. Wiley/Blackwell (10.1111). 2015;42:740–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Auschill TM, Sculean A, Hellwig E, Haug M, Arweiler NB. Clinical and antibacterial effect of toothpastes with a new ingredient. J Dent Res. 2007;86.

  39. Giertsen E, Guggenheim B, Gmür R. Antiplaque effects of ethyl lauroyl arginine in situ. J Dent Res. 2007;86.

  40. Zijnge V, van Leeuwen MBM, Degener JE, Abbas F, Thurnheer T, Gmür R, et al. Oral biofilm architecture on natural teeth. Bereswill S, editor. PLoS One. Public Library of Science. 2010;5:e9321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Mariotti A. Dental plaque-induced gingival diseases. Ann Periodontol. American Academy of Periodontology. 1999;4:7–17.

    Article  CAS  PubMed  Google Scholar 

  42. Axelsson P, Lindhe J. The effect of a preventive programme on dental plaque, gingivitis and caries in schoolchildren. Results after one and two years. J Clin Periodontol. Wiley/Blackwell (10.1111). 1974;1:126–38.

    Article  CAS  PubMed  Google Scholar 

  43. Durack DT. Prevention of infective endocarditis. Wood AJJ, editor. N Engl J Med Massachusetts Medical Society. 1995;332:38–44.

    Article  CAS  PubMed  Google Scholar 

  44. Strom BL, Abrutyn E, Berlin JA, Kinman JL, Feldman RS, Stolley PD, et al. Dental and cardiac risk factors for infective endocarditis: a population-based, case-control study. Ann Intern Med American College of Physicians. 1998;129:761.

    Article  CAS  PubMed  Google Scholar 

  45. Lockhart PB, Brennan MT, Thornhill M, Michalowicz BS, Noll JR, Bahrani-Mougeot FK, et al. Poor oral hygiene as a risk factor for infective endocarditis–related bacteremia. J Am Dent Assoc. 2009;140:1238–44. 

  46. Dajani AS, Taubert KA, Wilson W, Bolger AF, Bayer A, Ferrieri P, et al. Prevention of bacterial endocarditis: recommendations by the American Heart Association. J Am Dent Assoc. 1997;128:1142–51.

  47. Noiri Y, Ehara A, Kawahara T, Takemura N, Ebisu S. Participation of bacterial biofilms in refractory and chronic periapical periodontitis. J Endod. Elsevier. 2002;28:679–83.

    Article  PubMed  Google Scholar 

  48. Ricucci D, Siqueira JF. Biofilms and apical periodontitis: study of prevalence and association with clinical and histopathologic findings. J Endod. Elsevier. 2010;36:1277–88.

    Article  PubMed  Google Scholar 

  49. Nair PNR, Henry S, Cano V, Vera J. Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after “one-visit” endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod Mosby. 2005;99:231–52.

    Article  CAS  PubMed  Google Scholar 

  50. Kidd EA, Fejerskov O. What constitutes dental caries? Histopathology of carious enamel and dentin related to the action of cariogenic biofilms. J Dent Res. 2004;83:35–38.

  51. Shu M, Wong L, Miller JH, Sissons CH. Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system. Arch Oral Biol. Pergamon. 2000;45:27–40.

    Article  CAS  PubMed  Google Scholar 

  52. Giacaman RA, Campos P, Muñoz-Sandoval C, Castro RJ. Cariogenic potential of commercial sweeteners in an experimental biofilm caries model on enamel. Arch Oral Biol. Pergamon. 2013;58:1116–22.

    Article  CAS  PubMed  Google Scholar 

  53. Hayek RRA, Araújo NS, Gioso MA, Ferreira J, Baptista-Sobrinho CA, Yamada AM, et al. Comparative study between the effects of photodynamic therapy and conventional therapy on microbial reduction in ligature-induced peri-implantitis in dogs. J Periodontol. Wiley-Blackwell. 2005;76:1275–81.

    Article  PubMed  Google Scholar 

  54. Mombelli A, Müller N, Cionca N. The epidemiology of peri-implantitis. Clin Oral Implants Res. Wiley/Blackwell (10.1111). 2012;23:67–76.

    Article  PubMed  Google Scholar 

  55. Mombelli A, Décaillet F. The characteristics of biofilms in peri-implant disease. J Clin Periodontol. Wiley/Blackwell (10.1111). 2011;38:203–13.

    Article  PubMed  Google Scholar 

  56. Carlin V, Matsumoto MA, Saraiva PP, Artioli A, Oshima CTF, Ribeiro DA. Cytogenetic damage induced by mouthrinses formulations in vivo and in vitro. Clin Oral Investig. Springer-Verlag. 2012;16:813–20.

    Article  PubMed  Google Scholar 

  57. Silverman S, Wilder R. Antimicrobial mouthrinse as part of a comprehensive oral care regimen: safety and compliance factors. J Am Dent Assoc. Elsevier. 2006;137:S22–6.

    Article  Google Scholar 

  58. Charles CH, Mostler KM, Bartels LL, Mankodi SM. Comparative antiplaque and antigingivitis effectiveness of a chlorhexidine and an essential oil mouthrinse: 6-month clinical trial. J Clin Periodontol. Wiley/Blackwell (10.1111). 2004;31:878–84.

    Article  CAS  PubMed  Google Scholar 

  59. Costerton JW, Stewart PS, Greenberg EP, Mattick JS. Bacterial biofilms: a common cause of persistent infections. Science. American Association for the Advancement of Science. 1999;284:1318–22.

    Article  CAS  PubMed  Google Scholar 

  60. Nishihara T, Koseki T. Microbial etiology of periodontitis. Periodontol. Wiley/Blackwell (10.1111). 2004;36:14–26.

    Article  Google Scholar 

  61. Olson ME, Ceri H, Morck DW, Buret AG, Read RR. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res. Canadian Veterinary Medical Association. 2002;66:86–92.

    PubMed  PubMed Central  Google Scholar 

  62. Desrosiers M, Bendouah Z, Barbeau J. Effectiveness of topical antibiotics on Staphylococcus Aureus biofilm in vitro. Am J Rhinol. SAGE Publications Sage CA: Los Angeles, CA. 2007;21:149–53.

    Article  PubMed  Google Scholar 

  63. Smith K, Perez A, Ramage G, Gemmell CG, Lang S. Comparison of biofilm-associated cell survival following in vitro exposure of meticillin-resistant Staphylococcus aureus biofilms to the antibiotics clindamycin, daptomycin, linezolid, tigecycline and vancomycin. Int J Antimicrob Agents. Elsevier. 2009;33:374–8.

    Article  CAS  PubMed  Google Scholar 

  64. Li Y, Zhang Y. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli †. Antimicrob Agents Chemother. 2007;51:2092–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature. Nature Publishing Group. 2005;436:1171–5.

    Article  CAS  PubMed  Google Scholar 

  66. Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother. American Society for Microbiology (ASM). 2000;44:1818–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vrany JD, Stewart PS, Suci PA. Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa bofilms displaying rapid-transport characteristics. Antimicrob Agents Chemother. American Society for Microbiology (ASM). 1997;41:1352–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stewart PS. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother. American Society for Microbiology (ASM). 1996;40:2517–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dunne WM, Mason EO, Kaplan SL Jr, Kaplan SL. Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother. American Society for Microbiology (ASM). 1993;37:2522–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hoyle BD, Alcantara J, Costerton JW. Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrob Agents Chemother. American Society for Microbiology (ASM). 1992;36:2054–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hong V, Wrolstad RE. Use of HPLC separation/photodiode array detection for characterization of anthocyanins. J Agric Food Chem. 1990;38:708–15.

    Article  CAS  Google Scholar 

  72. Gopu V, Kothandapani S, Shetty PH. Quorum quenching activity of Syzygium cumini (L.) Skeels and its anthocyanin malvidin against Klebsiella pneumoniae. Microb Pathog Academic Press. 2015;79:61–9.

    Article  CAS  PubMed  Google Scholar 

  73. Viskelis P, Rubinskienė M, Jasutienė I, Šarkinas A, Daubaras R, Česonienė L. Anthocyanins, antioxidative, and antimicrobial properties of American Cranberry ( Vaccinium macrocarpon Ait.) and their press cakes. J Food Sci. Wiley/Blackwell (10.1111). 2009;74:C157–61.

    Article  CAS  PubMed  Google Scholar 

  74. Weiss EI, Lev-Dor R, Sharon N, Ofek I. Inhibitory effect of a high-molecular-weight constituent of cranberry on adhesion of oral bacteria. Crit Rev Food Sci Nutr. 2002;42:285–92.

    Article  CAS  PubMed  Google Scholar 

  75. Steinberg D, Feldman M, Ofek I, Weiss EI. Effect of a high-molecular-weight component of cranberry on constituents of dental biofilm. J Antimicrob Chemother. Oxford University Press. 2004;54:86–9.

    Article  CAS  PubMed  Google Scholar 

  76. Hill LE, Gomes C, Taylor TM. Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT Food Sci Technol Academic Press. 2013;51:86–93.

    Article  CAS  Google Scholar 

  77. SZENTE L, SZEJTLI J. Molecular encapsulation of natural and synthetic coffee flavor with B-cyclodextrin. J Food Sci. John Wiley & Sons, Ltd. 1986;51:1024–7.

    Article  CAS  Google Scholar 

  78. Szejtli J, Szente L, Hung EB-E. Molecular encapsulation of volatile, easily oxidizable labile flavour substances by cyclodextrins. Acta Chim Acad Sci. 1979.

  79. Belščak-Cvitanović A, Stojanović R, Manojlović V, Komes D, Cindrić IJ, Nedović V, et al. Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate–chitosan system enhanced with ascorbic acid by electrostatic extrusion. Food Res Int. Elsevier. 2011;44:1094–101.

  80. Chan E-S, Yim Z-H, Phan S-H, Mansa RF, Ravindra P. Encapsulation of herbal aqueous extract through absorption with ca-alginate hydrogel beads. Food Bioprod Process. Elsevier. 2010;88:195–201.

    Article  CAS  Google Scholar 

  81. Deladino L, Anbinder PS, Navarro AS, Martino MN. Encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydr Polym. Elsevier. 2008;71:126–34.

    Article  CAS  Google Scholar 

  82. Ganea GM, Fakayode SO, Losso JN, van Nostrum CF, Sabliov CM, Warner IM. Delivery of phytochemical thymoquinone using molecular micelle modified poly(D, L lactide- co -glycolide) (PLGA) nanoparticles. Nanotechnology. 2010;21:285104.

    Article  PubMed  CAS  Google Scholar 

  83. Silva LM, Hill LE, Figueiredo E, Gomes CL. Delivery of phytochemicals of tropical fruit by-products using poly (dl-lactide-co-glycolide) (PLGA) nanoparticles: Synthesis, characterization, and antimicrobial activity. Food Chem. Elsevier. 2014;165:362–70.

    Article  CAS  PubMed  Google Scholar 

  84. Pereira MC, Hill LE, Zambiazi RC, Mertens-Talcott S, Talcott S, Gomes CL. Nanoencapsulation of hydrophobic phytochemicals using poly (dl-lactide-co-glycolide) (PLGA) for antioxidant and antimicrobial delivery applications: Guabiroba fruit (Campomanesia xanthocarpa O. Berg) study. LWT Food Sci Technol Academic Press. 2015;63:100–7.

    Article  CAS  Google Scholar 

  85. Pool H, Mendoza S, Xiao H, McClements DJ. Encapsulation and release of hydrophobic bioactive components in nanoemulsion-based delivery systems: impact of physical form on quercetin bioaccessibility. Food Funct. Royal Society of Chemistry. 2013;4:162–74.

    Article  CAS  PubMed  Google Scholar 

  86. Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC. Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B: Biointerfaces. Elsevier. 2010;80:184–92.

    Article  CAS  PubMed  Google Scholar 

  87. GORTZI O, LALAS S, CHINOU I. TSAKNIS J. Reevaluation of antimicrobial and antioxidant activity of Thymus spp. extracts before and after encapsulation in liposomes. J Food Prot. International Association for Food Protection. 2006;69:2998–3005.

    Article  PubMed  Google Scholar 

  88. Gortzi O, Lalas S, Chinou I, Tsaknis J. Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. Eur Food Res Technol. Springer-Verlag. 2008;226:583–90.

    Article  CAS  Google Scholar 

  89. Sessa M, Casazza AA, Perego P, Tsao R, Ferrari G, Donsì F. Exploitation of polyphenolic extracts from grape marc as natural antioxidants by encapsulation in lipid-based nanodelivery systems. Food Bioprocess Technol. Springer US. 2013;6:2609–20.

    Article  CAS  Google Scholar 

  90. Jhunjhunwala S, Raimondi G, Glowacki AJ, Hall SJ, Maskarinec D, Thorne SH, et al. Bioinspired controlled release of CCL22 recruits regulatory T cells in vivo. Adv Mater. 2012;24:4735–8.

  91. Jhunjhunwala S, Balmert SC, Raimondi G, Dons E, Nichols EE, Thomson AW, et al. Controlled release formulations of IL-2, TGF-B1 and rapamycin for the induction of regulatory T cells. J Control Release. Elsevier B.V. 2012;159:78–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Glowacki AJ, Yoshizawa S, Jhunjhunwala S, Vieira AE, Garlet GP, Sfeir C, et al. Prevention of inflammation-mediated bone loss in murine and canine periodontal disease via recruitment of regulatory lymphocytes. Proc Natl Acad Sci U S A. 2013;110:18525–30.

  93. Ratay ML, Glowacki AJ, Balmert SC, Acharya AP, Polat J, Andrews LP, et al. Treg-recruiting microspheres prevent inflammation in a murine model of dry eye disease. J Control Release. Elsevier. 2017;258:208–17.

  94. Ratay ML, Balmert SC, Acharya AP, Greene AC, Meyyappan T, Little SR. TRI Microspheres prevent key signs of dry eye disease in a murine, inflammatory model. Sci Rep. Nature Publishing Group. 2017;7:17527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Ratay ML, Balmert SC, Bassin EJ, Little SR. Controlled release of an HDAC inhibitor for reduction of inflammation in dry eye disease. Acta Biomater. Elsevier. 2018;71:261–70.

    Article  CAS  PubMed  Google Scholar 

  96. Balmert SC, Donahue C, Vu JR, Erdos G, Falo LD, Little SR. In vivo induction of regulatory T cells promotes allergen tolerance and suppresses allergic contact dermatitis. J Control Release. Elsevier. 2017;261:223–33.

    Article  CAS  PubMed  Google Scholar 

  97. Fedorchak MV, Conner IP, Medina CA, Wingard JB, Schuman JS, Little SR. 28-day intraocular pressure reduction with a single dose of brimonidine tartrate-loaded microspheres. Exp Eye Res Academic Press. 2014;125:210–6.

    Article  CAS  PubMed  Google Scholar 

  98. Balmert SC, Zmolek AC, Glowacki AJ, Knab TD, Rothstein SN, Wokpetah JM, et al. Positive charge of “sticky” peptides and proteins impedes release from negatively charged PLGA matrices. J Mater Chem B Royal Society of Chemistry. 2015;3:4723–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lin L-Z, Harnly JM. A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials. J Agric Food Chem American Chemical Society. 2007;55:1084–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wilson T, Singh AP, Vorsa N, Goettl CD, Kittleson KM, Roe CM, et al. Human glycemic response and phenolic content of unsweetened cranberry juice. J Med Food. 2008;11:46–54.

  101. Allison Turner, Shao-Nong Chen, Dejan Nikolic, Richard van Breemen, Norman R. Farnsworth and, Pauli GF. Coumaroyl iridoids and a depside from cranberry (Vaccinium macrocarpon). J Nat Prod American Chemical Society; 2007;70:253–258.

  102. Yu LL, Zhou KK, Parry J. Antioxidant properties of cold-pressed black caraway, carrot, cranberry, and hemp seed oils. Food Chem. Elsevier. 2005;91:723–9.

    Article  CAS  Google Scholar 

  103. Parker TD, Adams DA, Zhou K, Harris M, Yu L. Fatty acid composition and oxidative stability of cold-pressed edible seed oils. J Food Sci. Wiley/Blackwell (10.1111). 2003;68:1240–3.

    Article  CAS  Google Scholar 

  104. Angadi SC, Manjeshwar LS, Aminabhavi TM. Stearic acid-coated chitosan-based interpenetrating polymer network microspheres: controlled release characteristics. Ind Eng Chem Res American Chemical Society. 2011;50:4504–14.

    Article  CAS  Google Scholar 

  105. Robson H, Craig DQ, Deutsch D. An investigation into the release of cefuroxime axetil from taste-masked stearic acid microspheres: part 1: the influence of the dissolution medium on the drug release profile and the physical integrity of the microspheres. Int J Pharm. Elsevier. 1999;190:183–92.

    Article  CAS  PubMed  Google Scholar 

  106. Chary RB, Vani G, Rao YM. In vitro and in vivo adhesion testing of mucoadhesive drug delivery systems. Drug Dev Ind Pharm. 1999;25:685–90.

    Article  CAS  PubMed  Google Scholar 

  107. Hayama M, Yamamoto K, Kohori F, Uesaka T, Ueno Y, Sugaya H, et al. Nanoscopic behavior of polyvinylpyrrolidone particles on polysulfone/polyvinylpyrrolidone film. Biomaterials. Elsevier. 2004;25:1019–28.

  108. Yang S, Sadekuzzaman M, Ha S-D. Treatment with lauric arginate ethyl ester and commercial bacteriophage, alone or in combination, inhibits Listeria monocytogenes in chicken breast tissue. Food Control. Elsevier. 2017;78:57–63.

    Article  CAS  Google Scholar 

  109. Yordanov GG, Yoshimura H, Dushkin CD. Fine control of the growth and optical properties of CdSe quantum dots by varying the amount of stearic acid in a liquid paraffin matrix. Colloids Surf A Physicochem Eng Asp Elsevier. 2008;322:177–82.

    Article  CAS  Google Scholar 

  110. Morigaki K, Walde P. Fatty acid vesicles. Curr Opin Colloid Interface Sci. Elsevier. 2007;12:75–80.

    Article  CAS  Google Scholar 

  111. Lavasanifar A, Samuel J, Kwon GS. The effect of fatty acid substitution on the in vitro release of amphotericin B from micelles composed of poly(ethylene oxide)-block-poly(N-hexyl stearate-l-aspartamide). J Control Release. Elsevier. 2002;79:165–72.

    Article  CAS  PubMed  Google Scholar 

  112. Hu F-Q, Ren G-F, Yuan H, Du Y-Z, Zeng S. Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids Surf B: Biointerfaces. Elsevier. 2006;50:97–103.

    Article  CAS  PubMed  Google Scholar 

  113. Hu F-Q, Jiang S-P, Du Y-Z, Yuan H, Ye Y-Q, Zeng S. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B: Biointerfaces. Elsevier. 2005;45:167–73.

    Article  CAS  PubMed  Google Scholar 

  114. Hu F-Q, Zhao M-D, Yuan H, You J, Du Y-Z, Zeng S. A novel chitosan oligosaccharide–stearic acid micelles for gene delivery: properties and in vitro transfection studies. Int J Pharm. Elsevier. 2006;315:158–66.

    Article  CAS  PubMed  Google Scholar 

  115. Hu F-Q, Liu L-N, Du Y-Z, Yuan H. Synthesis and antitumor activity of doxorubicin conjugated stearic acid-g-chitosan oligosaccharide polymeric micelles. Biomaterials. Elsevier. 2009;30:6955–63.

    Article  CAS  PubMed  Google Scholar 

  116. Zhang Q, Yie G, Li Y, Yang Q, Nagai T. Studies on the cyclosporin A loaded stearic acid nanoparticles. Int J Pharm. Elsevier. 2000;200:153–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Emilie Fromentin and NatureX (Avignon, France Headquarters) for providing our sample of cranberry extracts (CE15 Cranberry PE 15% proanthocyanidins BL-D). We also thank Richard Besingi, Erin Zaleski, and Sherket Peterson for their suggestions related to microbiological methods and suggestions related to adhesion promotion technologies. Graphical abstract was created with Biorender.com.

Funding

This work was financially supported in part by Johnson & Johnson Consumer Inc. contract no. 464703.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Little.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of informed consent

Saliva collection was approved by the University of Pittsburgh Institutional Review Board (study number: 20010259). Informed consent was obtained from all patients prior to participation in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greene, A.C., Acharya, A.P., Lee, S.B. et al. Cranberry extract-based formulations for preventing bacterial biofilms. Drug Deliv. and Transl. Res. 11, 1144–1155 (2021). https://doi.org/10.1007/s13346-020-00837-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00837-x

Keywords

Navigation