Skip to main content

Advertisement

Log in

Recent advances on microneedle arrays-mediated technology in cancer diagnosis and therapy

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Regarding the increasing prevalence of cancer throughout the globe, the development of novel alternatives for conventional therapies is inevitable to circumvent limitations such as low efficacy, complications, and high cost. Recently, microneedle arrays (MNs) have been introduced as a novel, minimally invasive, and low-cost approach. MNs can delivery both small molecule and macromolecular drugs or even nanoparticles (NPs) to the tumor tissue in a safe and controlled manner. Relying on the recent promising outcomes of MNs in transdermal delivery of anticancer agents, this review is aimed to summarize constituent materials, fabrication methods, advantages, and limitations of different types of MNs used in cancer therapy applications. This review paper also presents the potential use of MNs in transdermal delivery of NPs for effective chemotherapy, gene therapy, immunotherapy, photodynamic, and photothermal therapy. Additionally, MNs are currently explored as routine point-of-care health monitoring devices for transdermal detection of cancer biomarkers or physiologically relevant analytes which will be addressed in this paper. Despite the promising potential of MNs for cancer therapy and diagnosis, several limitations have impeded their therapeutic efficacy and real-time applicability that are addressed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

1-MT:

1-Methyl-DL-tryptophan

mHA:

1-MT-conjugated HA

5-ALA:

5-Aminolevulinic acid

5-FU:

5-Fluorouracil

Ac-DEX:

Acetal-modified dextran

aCTLA4:

Anti-CTLA4

APC:

Antigen-presenting cells

aPD1:

Anti-PD-1

AuNCs:

Au nanocages

CNTs:

Carbon nanotubes

CMC:

Carboxymethyl cellulose

CEA:

Carcinoembryonic antigen

CSMNs:

Core-shell structure microneedles

CLIP:

Continuous liquid interface production

PMVE/MA:

Copolymer of methyl vinyl ether and maleic anhydride

CMOS:

Complementary metal-oxide-semiconductor

CTL:

Cytolytic T lymphocytes

CTLA4:

Cytotoxic T lymphocyte-associated molecule-4

DAMPs:

Damage-associated molecular patterns

DCs:

Dendritic cells

DTX:

Docetaxel

DOX:

Doxorubicin

Teffs:

Effective T cells

GOx:

Glucose oxidase

GFNs:

Graphene family nanomaterials

HPV:

Human papillomavirus

HA:

Hyaluronic acid

HAase:

Hyaluronidase

HEM:

Hybrid electro-MNs

ICG:

Indocyanine green

iNOS:

Inducible NO synthase

IP:

Intraperitoneal

I.V.:

Intravenous

LCs:

Langerhans cells

LaB6:

Lanthanum hexaboride

LDH:

Layered double hydroxides

LCC-NPs:

Lipid-coated cisplatin nanoparticles

LIGA:

Lithography, electroplating, and molding

CPP-PEI1800-Man:

Mannosylated TAT peptide-grafted low molecular weight PEI

MBGs:

Mesoporous bioactive glasses

MSNs:

Mesoporous silica nanoparticles

MPEG-PDLLA-DTX:

Methoxy-poly (ethylene glycol) poly (D, L-lactide) micelles

ZnONW-MGP:

Microbubble generator probe

MIM:

Microinjection molding

MNs:

Microneedle arrays

MDR:

Multi-drug resistance

NCs:

Nanocarriers

NPs:

Nanoparticles

NLCs:

Nanostructured lipid carriers

NIR:

Near infrared

NO:

Nitric oxide

R8:

Octaarginine

OSM-(PEG-PAEU):

Oligo sulfamethazine conjugated poly (β-amino ester urethane)

OCT:

Optical coherence tomography

OVA:

Ovalbumin

PTX:

Paclitaxel

GNR-PEG:

PEGylated gold nanorods

PDT:

Photodynamic therapy

PTT:

Photothermal therapy

PC:

Phthalocyanine

PVD:

Physical vapor deposition

POC:

Point-of-care

PEDOT:

Poly (3, 4-ethylenedioxythiophene)

PLGA:

Poly D,L-lactic-co-glycolic acid

PLLA:

Poly L-lactic acid

PMVE/MA-PE:

Poly methyl vinyl ether-co-maleic acid pectin

PHEMA:

Poly 2-hydroxyethyl methacrylate

PMVE/MA-PEG:

Poly methyl vinyl ether/maleic acid-poly ethylene glycol

PCL:

Polycaprolactone

PC:

Polycarbonate

PD:

Polydopamine

PEGDA:

Polyethylene glycol diacrylate

PEI:

Polyethylenimine

POM:

Polyformaldehyde

γ-PGA:

Polyglutamic acid

PGA:

Polyglycolic acid

PLA:

Polylactic acid

PMMA:

Polymethyl methacrylate

PS-b-PAA:

Polystyrene-block-poly acrylic acid

PVA:

Polyvinyl alcohol

PDL1:

Programmed cell death ligand-1

PD1:

Programmed cell death receptor-1

PSCA:

Prostate stem cell antigen

PPIX:

Protoporphyrin IX

PB:

Prussian blue

p53 DNA:

p53 tumor suppressor gene

RIE:

Reactive ion etching

RALA:

Arginine-alanine-leucine-alanine

Treg:

Regulatory T cells

R848:

Resiquimod

pRb:

Retinoblastoma protein

SEM:

Scanning electron microscopy

STAT3:

Signal transducer and activity of transcription 3

siRNA:

Small interfering RNA

NaCMC:

Sodium carboxymethyl cellulose

SLNs:

Solid lipid nanoparticles

SC:

Stratum corneum

TT:

Tetanus toxoid

TDD:

Transdermal delivery

TAAs:

Tumor-associated antigens

tdLN:

Tumor-draining lymph node

TYR:

Tyrosinase

TRP-2:

Tyrosinase-related protein-2

US:

Ultrasound

VEGF:

Vascular endothelial growth factor

VA-CNT/PI:

Vertically aligned carbon nanotubes/polyimide

ZnONWs:

Zinc oxide nanowires

ZnPc:

Zinc phthalocyanine

References

  1. Atlihan-Gudogdu E, Ilem-Ozdemir D, Ekinci M, Ozgenc E, Demir ES, Sánchez-Dengra B, et al. Recent developments in cancer therapy and diagnosis. J Pharm Investig. 2020. https://doi.org/10.1007/s40005-020-00473-0.

  2. Carter P, Narasimhan B, Wang Q. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. Int J Pharm. 2019;555:49–62. https://doi.org/10.1016/j.ijpharm.2018.11.032.

    Article  CAS  PubMed  Google Scholar 

  3. Abolmaali SS, Tamaddon AM, Dinarvand R. A review of therapeutic challenges and achievements of methotrexate delivery systems for treatment of cancer and rheumatoid arthritis. Cancer Chemother Pharmacol. 2013;71(5):1115–30.

    Article  CAS  PubMed  Google Scholar 

  4. Javanmardi S, Reza Aghamaali M, Sadat Abolmaali S, Mohammadi S, Mohammad Tamaddon A. miR-21, an oncogenic target miRNA for cancer therapy: molecular mechanisms and recent advancements in chemo and radio-resistance. Curr Gene Ther. 2016;16(6):375–89.

    Article  CAS  Google Scholar 

  5. Peres J, Kwesi-Maliepaard EM, Rambow F, Larue L, Prince S. The tumour suppressor, miR-137, inhibits malignant melanoma migration by targetting the TBX3 transcription factor. Cancer Lett. 2017;405:111–9. https://doi.org/10.1016/j.canlet.2017.07.018.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang W, Song Y, Eldi P, Guo X, Hayball JD, Garg S, et al. Targeting prostate cancer cells with hybrid elastin-like polypeptide/liposome nanoparticles. Int J Nanomed. 2018;13:293.

    Article  CAS  Google Scholar 

  7. Qiu Y, Arcadia C, Alibakhshi MA, Rosenstein J, Wanunu M. Nanopore fabrication in ultrathin HFO2 membranes for nanopore-based DNA sequencing. BPJ. 2018;114(3):179a.

    Google Scholar 

  8. Taghizadeh S, Alimardani V, Roudbali PL, Ghasemi Y, Kaviani E. Gold nanoparticles application in liver cancer. Photodiagn Photodyn Ther. 2019;25:389–400. https://doi.org/10.1016/j.pdpdt.2019.01.027.

    Article  CAS  Google Scholar 

  9. Alexander A, Dwivedi S, Giri TK, Saraf S, Saraf S, Tripathi DK. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release. 2012;164(1):26–40.

    Article  CAS  PubMed  Google Scholar 

  10. Pegoraro C, MacNeil S, Battaglia G. Transdermal drug delivery: from micro to nano. Nanoscale. 2012;4(6):1881–94.

    Article  CAS  PubMed  Google Scholar 

  11. Das Kurmi B, Tekchandani P, Paliwal R, Rai Paliwal S. Transdermal drug delivery: opportunities and challenges for controlled delivery of therapeutic agents using nanocarriers. Curr Drug Metab. 2017;18(5):481–95.

    Article  CAS  Google Scholar 

  12. Yin Q, Shen J, Zhang Z, Yu H, Li Y. Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Adv Drug Del Rev. 2013;65(13–14):1699–715.

    Article  CAS  Google Scholar 

  13. Lee H, Song C, Baik S, Kim D, Hyeon T, Kim D-H. Device-assisted transdermal drug delivery. Adv Drug Del Rev. 2018;127:35–45. https://doi.org/10.1016/j.addr.2017.08.009.

    Article  CAS  Google Scholar 

  14. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Indermun S, Luttge R, Choonara YE, Kumar P, Du Toit LC, Modi G, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release. 2014;185:130–8.

    Article  CAS  PubMed  Google Scholar 

  16. Leone M, Mönkäre J, Bouwstra J, Kersten G. Dissolving microneedle patches for dermal vaccination. Pharm Res. 2017;34(11):2223–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bhatnagar S, Gadeela PR, Thathireddy P, Venuganti VVK. Microneedle-based drug delivery: materials of construction. J Chem Sci. 2019;131(9):90.

    Article  CAS  Google Scholar 

  18. Mönkäre J, Pontier M, van Kampen EE, Du G, Leone M, Romeijn S, et al. Development of PLGA nanoparticle loaded dissolving microneedles and comparison with hollow microneedles in intradermal vaccine delivery. Eur J Pharm Biopharm. 2018;129:111–121.

  19. Cole G, Ali AA, McCrudden CM, McBride JW, McCaffrey J, Robson T, et al. DNA vaccination for cervical cancer: strategic optimisation of RALA mediated gene delivery from a biodegradable microneedle system. Eur J Pharm Biopharm. 2018;127:288–97.

    Article  CAS  PubMed  Google Scholar 

  20. Tasca F, Tortolini C, Bollella P, Antiochia R. Microneedle-based electrochemical devices for transdermal biosensing: a review. Curr Opin Electrochem. 2019;16:42–9. https://doi.org/10.1016/j.coelec.2019.04.003.

    Article  CAS  Google Scholar 

  21. Miller PR, Skoog SA, Edwards TL, Lopez DM, Wheeler DR, Arango DC, et al. Multiplexed microneedle-based biosensor array for characterization of metabolic acidosis. Talanta. 2012;88:739–42.

    Article  CAS  PubMed  Google Scholar 

  22. Prausnitz MR. Engineering microneedle patches for vaccination and drug delivery to skin. Ann Rev Chem Biomol Eng. 2017;8:177–200.

    Article  CAS  Google Scholar 

  23. Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998;87(8):922–5.

    Article  CAS  PubMed  Google Scholar 

  24. Dharadhar S, Majumdar A, Dhoble S, Patravale V. Microneedles for transdermal drug delivery: a systematic review. Drug Dev Ind Pharm. 2019;45(2):188–201.

    Article  CAS  PubMed  Google Scholar 

  25. Qiu Y, Gao Y, Hu K, Li F. Enhancement of skin permeation of docetaxel: a novel approach combining microneedle and elastic liposomes. J Control Release. 2008;129(2):144–50.

    Article  CAS  PubMed  Google Scholar 

  26. Naguib YW, Kumar A, Cui Z. The effect of microneedles on the skin permeability and antitumor activity of topical 5-fluorouracil. Acta Pharm Sin B. 2014;4(1):94–9. https://doi.org/10.1016/j.apsb.2013.12.013.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chablani L, Tawde SA, Akalkotkar A, D’Souza MJ. Evaluation of a particulate breast cancer vaccine delivered via skin. AAPS J. 2019;21(2):12.

    Article  PubMed  Google Scholar 

  28. Zandi A, Khayamian MA, Saghafi M, Shalileh S, Katebi P, Assadi S, et al. Microneedle-based generation of microbubbles in cancer tumors to improve ultrasound-assisted drug delivery. Adv Healthc Mater. 2019;8(17):1900613. https://doi.org/10.1002/adhm.201900613.

    Article  CAS  Google Scholar 

  29. Ahmed KS, Shan X, Mao J, Qiu L, Chen J. Derma roller® microneedles-mediated transdermal delivery of doxorubicin and celecoxib co-loaded liposomes for enhancing the anticancer effect. Mater Sci Eng C. 2019;99:1448–58.

    Article  CAS  Google Scholar 

  30. Tham HP, Xu K, Lim WQ, Chen H, Zheng M, Thng TGS, et al. Microneedle-assisted topical delivery of Photodynamically active mesoporous formulation for combination therapy of deep-seated melanoma. ACS Nano. 2018;12(12):11936–48. https://doi.org/10.1021/acsnano.8b03007.

    Article  CAS  PubMed  Google Scholar 

  31. Hu Y, Xu B, Xu J, Shou D, Liu E, Gao J, et al. Microneedle-assisted dendritic cell-targeted nanoparticles for transcutaneous DNA immunization. Polym Chem. 2015;6(3):373–9.

    Article  CAS  Google Scholar 

  32. Keum DH, Jung HS, Wang T, Shin MH, Kim YE, Kim KH, et al. Microneedle biosensor for real-time electrical detection of nitric oxide for in situ cancer diagnosis during Endomicroscopy. Adv Healthc Mater. 2015;4(8):1153–8. https://doi.org/10.1002/adhm.201500012.

    Article  CAS  PubMed  Google Scholar 

  33. Kim CS, Wilder-Smith PB, Ahn Y-C, Liaw L-HL, Chen Z, Kwon YJ. Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles. JBO. 2009;14(3):034008.

    Article  PubMed  CAS  Google Scholar 

  34. Chen L, Zhang C, Xiao J, You J, Zhang W, Liu Y, et al. Local extraction and detection of early stage breast cancers through a microneedle and nano-ag/MBL film based painless and blood-free strategy. Mater Sci Eng C. 2020;109:110402.

    Article  CAS  Google Scholar 

  35. Song S, Na J, Jang M, Lee H, Lee H-S, Lim Y-B et al. A CMOS VEGF sensor for cancer diagnosis using a peptide aptamer-based functionalized microneedle. IEEE transactions on biomedical circuits and systems. 2019;13(6):1288–1299.

  36. Uddin MJ, Scoutaris N, Klepetsanis P, Chowdhry B, Prausnitz MR, Douroumis D. Inkjet printing of transdermal microneedles for the delivery of anticancer agents. Int J Pharm. 2015;494(2):593–602.

    Article  CAS  PubMed  Google Scholar 

  37. Ma Y, Boese SE, Luo Z, Nitin N, Gill HS. Drug coated microneedles for minimally-invasive treatment of oral carcinomas: development and in vitro evaluation. BioMi. 2015;17(2):44. https://doi.org/10.1007/s10544-015-9944-y.

    Article  CAS  Google Scholar 

  38. Ruan W, Zhai Y, Yu K, Wu C, Xu Y. Coated microneedles mediated intradermal delivery of octaarginine/BRAF siRNA nanocomplexes for anti-melanoma treatment. Int J Pharm. 2018;553(1):298–309. https://doi.org/10.1016/j.ijpharm.2018.10.043.

    Article  CAS  PubMed  Google Scholar 

  39. Jain AK, Lee CH, Gill HS. 5-Aminolevulinic acid coated microneedles for photodynamic therapy of skin tumors. J Control Release. 2016;239:72–81.

    Article  CAS  PubMed  Google Scholar 

  40. Duong HTT, Yin Y, Thambi T, Nguyen TL, Giang Phan VH, Lee MS, et al. Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy. Biomaterials. 2018;185:13–24. https://doi.org/10.1016/j.biomaterials.2018.09.008.

    Article  CAS  PubMed  Google Scholar 

  41. Mansoor I, Lai J, Ranamukhaarachchi S, Schmitt V, Lambert D, Dutz J, et al. A microneedle-based method for the characterization of diffusion in skin tissue using doxorubicin as a model drug. BioMi. 2015;17(3):61.

    Google Scholar 

  42. Jung YS, Koo D-H, Yang J-Y, Lee H-Y, Park J-H, Park JH. Peri-tumor administration of 5-fluorouracil sol-gel using a hollow microneedle for treatment of gastric cancer. Drug Deliv. 2018;25(1):872–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang T, Deng Y, Chen J, Zhao Y, Yue R, Choy KW, et al. Local administration of siRNA through microneedle: optimization, bio-distribution, tumor suppression and toxicity. Sci Rep. 2016;6(1):30430. https://doi.org/10.1038/srep30430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang T, Deng Y, Chen J, Zhao Y, Yue R, Choy KW, et al. Local administration of siRNA through microneedle: optimization, bio-distribution, tumor suppression and toxicity. Sci Rep. 2016;6(1):1–8.

    Article  CAS  Google Scholar 

  45. Nguyen HX, Bozorg BD, Kim Y, Wieber A, Birk G, Lubda D, et al. Poly (vinyl alcohol) microneedles: fabrication, characterization, and application for transdermal drug delivery of doxorubicin. Eur J Pharm Biopharm. 2018;129:88–103.

    Article  CAS  PubMed  Google Scholar 

  46. Ingrole RS, Gill HS. Microneedle coating methods: a review with a perspective. J Pharmacol Exp Ther. 2019;370(3):555–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lan X, She J, Lin D-a, Xu Y, Li X, Yang W-f, et al. Microneedle-mediated delivery of lipid-coated cisplatin nanoparticles for efficient and safe Cancer therapy. ACS Appl Mater Interfaces. 2018;10(39):33060–9.

    Article  CAS  PubMed  Google Scholar 

  48. Bhatnagar S, Bankar NG, Kulkarni MV, Venuganti VVK. Dissolvable microneedle patch containing doxorubicin and docetaxel is effective in 4T1 xenografted breast cancer mouse model. Int J Pharm. 2019;556:263–75. https://doi.org/10.1016/j.ijpharm.2018.12.022.

    Article  CAS  PubMed  Google Scholar 

  49. Wang PM, Cornwell M, Hill J, Prausnitz MR. Precise microinjection into skin using hollow microneedles. J Invest Dermatol. 2006;126(5):1080–7. https://doi.org/10.1038/sj.jid.5700150.

    Article  CAS  PubMed  Google Scholar 

  50. Zhou Z, Pang J, Wu X, Wu W, Chen X, Kong M. Reverse immune suppressive microenvironment in tumor draining lymph nodes to enhance anti-PD1 immunotherapy via nanovaccine complexed microneedle. Nano Res. 2020:1–10. https://doi.org/10.1007/s12274-020-2737-5.

  51. Chen M-C, Lin Z-W, Ling M-H. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and Photothermal therapy. ACS Nano. 2016;10(1):93–101. https://doi.org/10.1021/acsnano.5b05043.

    Article  CAS  PubMed  Google Scholar 

  52. Hao Y, Dong M, Zhang T, Peng J, Jia Y, Cao Y, et al. Novel approach of using near-infrared responsive PEGylated gold Nanorod coated poly(l-lactide) microneedles to enhance the antitumor efficiency of docetaxel-loaded MPEG-PDLLA micelles for treating an A431 tumor. ACS Appl Mater Interfaces. 2017;9(18):15317–27. https://doi.org/10.1021/acsami.7b03604.

    Article  CAS  PubMed  Google Scholar 

  53. Moreira AF, Rodrigues CF, Jacinto TA, Miguel SP, Costa EC, Correia IJ. Poly (vinyl alcohol)/chitosan layer-by-layer microneedles for cancer chemo-photothermal therapy. Int J Pharm. 2020;576:118907.

    Article  CAS  PubMed  Google Scholar 

  54. Pei P, Yang F, Liu J, Hu H, Du X, Hanagata N, et al. Composite-dissolving microneedle patches for chemotherapy and photothermal therapy in superficial tumor treatment. Biomater Sci. 2018;6(6):1414–23.

    Article  CAS  PubMed  Google Scholar 

  55. Hao Y, Chen Y, He X, Yang F, Han R, Yang C, et al. Near-infrared responsive 5-fluorouracil and indocyanine green loaded MPEG-PCL nanoparticle integrated with dissolvable microneedle for skin cancer therapy. Bioactive Mater. 2020;5(3):542–52. https://doi.org/10.1016/j.bioactmat.2020.04.002.

    Article  Google Scholar 

  56. Chen M, Quan G, Wen T, Yang P, Qin W, Mai H, et al. Cold to hot: binary cooperative microneedle array-amplified Photoimmunotherapy for eliciting antitumor immunity and the abscopal effect. ACS Appl Mater Interfaces. 2020. https://doi.org/10.1021/acsami.0c05090.

  57. Zhao X, Li X, Zhang P, Du J, Wang Y. Tip-loaded fast-dissolving microneedle patches for photodynamic therapy of subcutaneous tumor. J Control Release. 2018;286:201–9.

    Article  CAS  PubMed  Google Scholar 

  58. Chen S-X, Ma M, Xue F, Shen S, Chen Q, Kuang Y, et al. Construction of microneedle-assisted co-delivery platform and its combining photodynamic/immunotherapy. J Control Release. 2020;324:218–27. https://doi.org/10.1016/j.jconrel.2020.05.006.

    Article  CAS  PubMed  Google Scholar 

  59. Wang C, Ye Y, Hochu GM, Sadeghifar H, Gu Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 2016;16(4):2334–40. https://doi.org/10.1021/acs.nanolett.5b05030.

    Article  CAS  PubMed  Google Scholar 

  60. Ye Y, Wang J, Hu Q, Hochu GM, Xin H, Wang C, et al. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano. 2016;10(9):8956–63.

    Article  CAS  PubMed  Google Scholar 

  61. Steinman RM. Lasker Basic Medical Research Award. Dendritic cells: versatile controllers of the immune system. Nat Med. 2007;13:1155.

    Article  CAS  PubMed  Google Scholar 

  62. Ye Y, Wang C, Zhang X, Hu Q, Zhang Y, Liu Q, et al. A melanin-mediated cancer immunotherapy patch. Sci Immunol. 2017;2(17):eaan5692.

    Article  PubMed  Google Scholar 

  63. Ali AA, McCrudden CM, McCaffrey J, McBride JW, Cole G, Dunne NJ, et al. DNA vaccination for cervical cancer; a novel technology platform of RALA mediated gene delivery via polymeric microneedles. Nanomed Nanotechnol Biol Med. 2017;13(3):921–32.

    Article  CAS  Google Scholar 

  64. Cole G, Ali AA, McErlean E, Mulholland EJ, Short A, McCrudden CM, et al. DNA vaccination via RALA nanoparticles in a microneedle delivery system induces a potent immune response against the endogenous prostate cancer stem cell antigen. Acta Biomater. 2019;96:480–90. https://doi.org/10.1016/j.actbio.2019.07.003.

    Article  CAS  PubMed  Google Scholar 

  65. Lee K, Kim JD, Lee CY, Her S, Jung H. A high-capacity, hybrid electro-microneedle for in-situ cutaneous gene transfer. Biomaterials. 2011;32(30):7705–10.

    Article  CAS  PubMed  Google Scholar 

  66. Pan J, Ruan W, Qin M, Long Y, Wan T, Yu K, et al. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci Rep. 2018;8(1):1–11.

    Google Scholar 

  67. Xu Q, Li X, Zhang P, Wang Y. Rapidly dissolving microneedle patch for synergistic gene and photothermal therapy of subcutaneous tumor. J Mater Chem B. 2020;8:4331–4339.

  68. Bystrova S, Luttge R. Micromolding for ceramic microneedle arrays. MiEng. 2011;88(8):1681–4.

    CAS  Google Scholar 

  69. Gupta J, Gill HS, Andrews SN, Prausnitz MR. Kinetics of skin resealing after insertion of microneedles in human subjects. J Control Release. 2011;154(2):148–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Parker E, Rao M, Turner K, Meinhart C, MacDonald N. Bulk micromachined titanium microneedles. JMemS. 2007;16(2):289–95.

    CAS  Google Scholar 

  71. Jung PG, Lee TW, Oh DJ, Hwang SJ, Jung ID, Lee SM, et al. Nickel microneedles fabricated by sequential copper and nickel electroless plating and copper chemical wet etching. Sens Mater. 2008;20(1):45–53.

    CAS  Google Scholar 

  72. Park J-H, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release. 2005;104(1):51–66.

    Article  CAS  PubMed  Google Scholar 

  73. Han M, Hyun D-H, Park H-H, Lee SS, Kim C-H, Kim C. A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer. JMiMi. 2007;17(6):1184.

    CAS  Google Scholar 

  74. Wilke N, Mulcahy A, Ye S-R, Morrissey A. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron J. 2005;36(7):650–6.

    Article  CAS  Google Scholar 

  75. Chabri F, Bouris K, Jones T, Barrow D, Hann A, Allender C, et al. Microfabricated silicon microneedles for nonviral cutaneous gene delivery. Br J Dermatol. 2004;150(5):869–77.

    Article  CAS  PubMed  Google Scholar 

  76. Martanto W, Davis SP, Holiday NR, Wang J, Gill HS, Prausnitz MR. Transdermal delivery of insulin using microneedles in vivo. Pharm Res. 2004;21(6):947–52.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang Y, Brown K, Siebenaler K, Determan A, Dohmeier D, Hansen K. Development of lidocaine-coated microneedle product for rapid, safe, and prolonged local analgesic action. Pharm Res. 2012;29(1):170–7.

    Article  PubMed  CAS  Google Scholar 

  78. Park J-H, Choi S-O, Seo S, Choy YB, Prausnitz MR. A microneedle roller for transdermal drug delivery. Eur J Pharm Biopharm. 2010;76(2):282–9.

    Article  CAS  PubMed  Google Scholar 

  79. Chen Y, Chen BZ, Wang QL, Jin X, Guo XD. Fabrication of coated polymer microneedles for transdermal drug delivery. J Control Release. 2017;265:14–21.

    Article  CAS  PubMed  Google Scholar 

  80. Johnson AR, Caudill CL, Tumbleston JR, Bloomquist CJ, Moga KA, Ermoshkin A, et al. Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLoS One. 2016;11(9):e0162518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Vecchione R, Coppola S, Esposito E, Casale C, Vespini V, Grilli S, et al. Electro-drawn drug-loaded biodegradable polymer microneedles as a viable route to hypodermic injection. Adv Funct Mater. 2014;24(23):3515–23.

    Article  CAS  Google Scholar 

  82. Kirkby M, Hutton ARJ, Donnelly RF. Microneedle mediated transdermal delivery of protein, peptide and antibody based therapeutics: current status and future considerations. Pharm Res. 2020;37(6):117. https://doi.org/10.1007/s11095-020-02844-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. O’Mahony C. Structural characterization and in-vivo reliability evaluation of silicon microneedles. BioMi. 2014;16(3):333–43.

    Google Scholar 

  84. Donnelly RF, Singh TRR, Tunney MM, Morrow DI, McCarron PA, O’Mahony C, et al. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res. 2009;26(11):2513–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Donnelly RF, Singh TRR, Alkilani AZ, McCrudden MT, O’Neill S, O’Mahony C, et al. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: potential for enhanced patient safety. Int J Pharm. 2013;451(1–2):76–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Banks SL, Paudel KS, Brogden NK, Loftin CD, Stinchcomb AL. Diclofenac enables prolonged delivery of naltrexone through microneedle-treated skin. Pharm Res. 2011;28(5):1211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen X, Fernando GJ, Crichton ML, Flaim C, Yukiko SR, Fairmaid EJ, et al. Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J Control Release. 2011;152(3):349–55.

    Article  CAS  PubMed  Google Scholar 

  88. Gittard S, Narayan R, Jin C, Ovsianikov A, Chichkov B, Monteiro-Riviere N, et al. Pulsed laser deposition of antimicrobial silver coating on Ormocer® microneedles. Biofabrication. 2009;1(4):041001.

    Article  CAS  PubMed  Google Scholar 

  89. Gill HS, Prausnitz MR. Pocketed microneedles for drug delivery to the skin. JPCS. 2008;69(5–6):1537–41.

    CAS  Google Scholar 

  90. Ameri M, Fan SC, Maa Y-F. Parathyroid hormone PTH (1-34) formulation that enables uniform coating on a novel transdermal microprojection delivery system. Pharm Res. 2010;27(2):303–13.

    Article  CAS  PubMed  Google Scholar 

  91. Boehm RD, Miller PR, Daniels J, Stafslien S, Narayan RJ. Inkjet printing for pharmaceutical applications. Mater Today. 2014;17(5):247–52.

    Article  CAS  Google Scholar 

  92. Lee HS, Ryu HR, Roh JY, Park J-H. Bleomycin-coated microneedles for treatment of warts. Pharm Res. 2017;34(1):101–12.

    Article  CAS  PubMed  Google Scholar 

  93. Boehm RD, Jaipan P, Skoog SA, Stafslien S, VanderWal L, Narayan RJ. Inkjet deposition of itraconazole onto poly (glycolic acid) microneedle arrays. Biointerphases. 2016;11(1):011008.

    Article  PubMed  CAS  Google Scholar 

  94. Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release. 2007;117(2):227–37.

    Article  CAS  PubMed  Google Scholar 

  95. McGrath MG, Vrdoljak A, O’Mahony C, Oliveira JC, Moore AC, Crean AM. Determination of parameters for successful spray coating of silicon microneedle arrays. Int J Pharm. 2011;415(1–2):140–9.

    Article  CAS  PubMed  Google Scholar 

  96. Chen X, Prow TW, Crichton ML, Jenkins DW, Roberts MS, Frazer IH, et al. Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. J Control Release. 2009;139(3):212–20.

    Article  CAS  PubMed  Google Scholar 

  97. Boehm R, Miller P, Hayes S, Monteiro-Riviere N, Narayan R. Modification of microneedles using inkjet printing. AIP Adv. 2011;1(2):022139.

    Article  CAS  PubMed Central  Google Scholar 

  98. Invernale MA, Tang BC, York RL, Le L, Hou DY, Anderson DG. Microneedle electrodes toward an amperometric glucose-sensing smart patch. Adv Healthc Mater. 2014;3(3):338–42.

    Article  CAS  PubMed  Google Scholar 

  99. Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Del Rev. 2004;56(5):581–7.

    Article  CAS  Google Scholar 

  100. Ronnander P, Simon L, Spilgies H, Koch A. Modelling the in-vitro dissolution and release of sumatriptan succinate from polyvinylpyrrolidone-based microneedles. Eur J Pharm Sci. 2018;125:54–63.

    Article  CAS  PubMed  Google Scholar 

  101. Chen M-C, Ling M-H, Kusuma SJ. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin. Acta Biomater. 2015;24:106–16.

    Article  CAS  PubMed  Google Scholar 

  102. Hao Y, Chen Y, Lei M, Zhang T, Cao Y, Peng J, et al. Near-infrared responsive PEGylated gold nanorod and doxorubicin loaded dissolvable hyaluronic acid microneedles for human epidermoid cancer therapy. Adv Therapeutics. 2018;1(2):1800008.

    Article  CAS  Google Scholar 

  103. Chen M-C, Lai K-Y, Ling M-H, Lin C-W. Enhancing immunogenicity of antigens through sustained intradermal delivery using chitosan microneedles with a patch-dissolvable design. Acta Biomater. 2018;65:66–75.

    Article  CAS  PubMed  Google Scholar 

  104. Migalska K, Morrow DI, Garland MJ, Thakur R, Woolfson AD, Donnelly RF. Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery. Pharm Res. 2011;28(8):1919–30.

    Article  CAS  PubMed  Google Scholar 

  105. Chen BZ, Ashfaq M, Zhu DD, Zhang XP, Guo XD. Controlled delivery of insulin using rapidly separating microneedles fabricated from Genipin-crosslinked gelatin. Macromol Rapid Commun. 2018;39(20):1800075.

    Article  CAS  Google Scholar 

  106. Ito Y, Murakami A, Maeda T, Sugioka N, Takada K. Evaluation of self-dissolving needles containing low molecular weight heparin (LMWH) in rats. Int J Pharm. 2008;349(1–2):124–9.

    Article  CAS  PubMed  Google Scholar 

  107. Ito Y, Yoshimitsu J-I, Shiroyama K, Sugioka N, Takada K. Self-dissolving microneedles for the percutaneous absorption of EPO in mice. J Drug Target. 2006;14(5):255–61. https://doi.org/10.1080/10611860600785080.

    Article  CAS  PubMed  Google Scholar 

  108. Loizidou EZ, Williams NA, Barrow DA, Eaton MJ, McCrory J, Evans SL, et al. Structural characterisation and transdermal delivery studies on sugar microneedles: experimental and finite element modelling analyses. Eur J Pharm Biopharm. 2015;89:224–31.

    Article  CAS  PubMed  Google Scholar 

  109. Martin C, Allender CJ, Brain KR, Morrissey A, Birchall JC. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J Control Release. 2012;158(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  110. Asmawi AA, Salim N, Ngan CL, Ahmad H, Abdulmalek E, Masarudin MJ, et al. Excipient selection and aerodynamic characterization of nebulized lipid-based nanoemulsion loaded with docetaxel for lung cancer treatment. Drug Deliv Transl Res. 2019;9(2):543–554.

  111. Jin X, Zhu DD, Chen BZ, Ashfaq M, Guo XD. Insulin delivery systems combined with microneedle technology. Adv Drug Del Rev. 2018.

  112. Larraneta E, Lutton RE, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep. 2016;104:1–32.

    Article  Google Scholar 

  113. Sabri AH, Ogilvie J, Abdulhamid K, Shpadaruk V, McKenna J, Segal J, et al. Expanding the applications of microneedles in dermatology. Eur J Pharm Biopharm. 2019;140:121–140.

  114. Ita K. Dissolving microneedles for transdermal drug delivery: advances and challenges. Biomed Pharmacother. 2017;93:1116–27.

    Article  CAS  PubMed  Google Scholar 

  115. Liu S, M-n J, Y-s Q, Kamiyama F, Katsumi H, Sakane T, et al. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. J Control Release. 2012;161(3):933–41.

    Article  CAS  PubMed  Google Scholar 

  116. Donnelly RF, Morrow DI, Singh TR, Migalska K, McCarron PA, O'Mahony C, et al. Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev Ind Pharm. 2009;35(10):1242–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xie S, Li Z, Yu Z. Microneedles for transdermal delivery of insulin. J Drug Deliv Sci Technol. 2015;28:11–7.

    Article  CAS  Google Scholar 

  118. Uddin MJ, Scoutaris N, Economidou SN, Giraud C, Chowdhry BZ, Donnelly RF, et al. 3D printed microneedles for anticancer therapy of skin tumours. Mater Sci Eng C. 2020;107:110248.

    Article  CAS  Google Scholar 

  119. van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans) dermal drug and vaccine delivery. J Control Release. 2012;161(2):645–55.

    Article  PubMed  CAS  Google Scholar 

  120. Miller PR, Narayan RJ, Polsky R. Microneedle-based sensors for medical diagnosis. J Mater Chem B. 2016;4(8):1379–83.

    Article  CAS  PubMed  Google Scholar 

  121. Stoeber B, Liepmann D. Arrays of hollow out-of-plane microneedles for drug delivery. JMemS. 2005;14(3):472–9.

    Google Scholar 

  122. Ovsianikov A, Chichkov B, Mente P, Monteiro-Riviere N, Doraiswamy A, Narayan R. Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery. Int J Appl Ceram Technol. 2007;4(1):22–9.

    Article  CAS  Google Scholar 

  123. McAllister DV, Wang PM, Davis SP, Park J-H, Canatella PJ, Allen MG, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci. 2003;100(24):13755–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Laurent PE, Bourhy H, Fantino M, Alchas P, Mikszta JA. Safety and efficacy of novel dermal and epidermal microneedle delivery systems for rabies vaccination in healthy adults. Vaccine. 2010;28(36):5850–6.

    Article  PubMed  Google Scholar 

  125. Davis SP, Martanto W, Allen MG, Prausnitz MR. Hollow metal microneedles for insulin delivery to diabetic rats. ITBE. 2005;52(5):909–15.

    Google Scholar 

  126. Yung K, Xu Y, Kang C, Liu H, Tam K, Ko S, et al. Sharp tipped plastic hollow microneedle array by microinjection moulding. JMiMi. 2011;22(1):015016.

    Google Scholar 

  127. Moon SJ, Lee SS, Lee H, Kwon T. Fabrication of microneedle array using LIGA and hot embossing process. Microsyst Technol. 2005;11(4–5):311–8.

    Article  CAS  Google Scholar 

  128. Lyon BJ, Aria AI, Gharib M. Fabrication of carbon nanotube—polyimide composite hollow microneedles for transdermal drug delivery. BioMi. 2014;16(6):879–86.

    CAS  Google Scholar 

  129. Gardeniers HJ, Luttge R, Berenschot EJ, De Boer MJ, Yeshurun SY, Hefetz M, et al. Silicon micromachined hollow microneedles for transdermal liquid transport. JMemS. 2003;12(6):855–62.

    Google Scholar 

  130. Khanna P, Luongo K, Strom JA, Bhansali S. Sharpening of hollow silicon microneedles to reduce skin penetration force. JMiMi. 2010;20(4):045011.

    Google Scholar 

  131. Perennes F, Marmiroli B, Matteucci M, Tormen M, Vaccari L, Di Fabrizio E. Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. JMiMi. 2006;16(3):473.

    CAS  Google Scholar 

  132. Lee K, Lee HC, Lee DS, Jung H. Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Adv Mater. 2010;22(4):483–6.

    Article  CAS  PubMed  Google Scholar 

  133. Wang P-C, Wester BA, Rajaraman S, Paik S-J, Kim S-H, Allen MG eds. Hollow polymer microneedle array fabricated by photolithography process combined with micromolding technique. Engineering in medicine and biology society, 2009. EMBC 2009. Annual International Conference of the IEEE; 2009: IEEE.

  134. Lhernould MS, Deleers M, Delchambre A. Hollow polymer microneedles array resistance and insertion tests. Int J Pharm. 2015;480(1–2):152–7.

    Article  CAS  PubMed  Google Scholar 

  135. Gittard SD, Miller PR, Boehm RD, Ovsianikov A, Chichkov BN, Heiser J, et al. Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles. Faraday Discuss. 2011;149:171–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Trautmann A, Roth G-L, Nujiqi B, Walther T, Hellmann R. Towards a versatile point-of-care system combining femtosecond laser generated microfluidic channels and direct laser written microneedle arrays. Microsyst Nanoeng. 2019;5(1):6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Norman JJ, Brown MR, Raviele NA, Prausnitz MR, Felner EI. Faster pharmacokinetics and increased patient acceptance of intradermal insulin delivery using a single hollow microneedle in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2013;14(6):459–65.

    Article  CAS  PubMed  Google Scholar 

  138. Rapid pharmacokinetics of intradermal insulin administered using microneedles in type 1 diabetes subjects. Diabetes Technol Ther. 2011;13(4):451–6. https://doi.org/10.1089/dia.2010.0204.

  139. Pettis RJ, Ginsberg B, Hirsch L, Sutter D, Keith S, McVey E, et al. Intradermal microneedle delivery of insulin lispro achieves faster insulin absorption and insulin action than subcutaneous injection. Diabetes Technol Ther. 2011;13(4):435–42. https://doi.org/10.1089/dia.2010.0184.

    Article  CAS  PubMed  Google Scholar 

  140. Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–58.

    Article  CAS  PubMed  Google Scholar 

  141. Baron N, Passave J, Guichardaz B, Cabodevila G. Investigations of development process of high hollow beveled microneedles using a combination of ICP RIE and dicing saw. Microsyst Technol. 2008;14(9):1475–80. https://doi.org/10.1007/s00542-008-0596-1.

    Article  CAS  Google Scholar 

  142. Lee D-S, Li CG, Ihm C, Jung H. A three-dimensional and bevel-angled ultrahigh aspect ratio microneedle for minimally invasive and painless blood sampling. Sensors Actuators B Chem. 2018;255:384–90.

    Article  CAS  Google Scholar 

  143. Martanto W, Choi Y, Joung Y-H, Allen MG, Prausnitz MR. Side-opening hollow microneedles for transdermal drug delivery. Atlanta: School of Chemical and Biomolecular Engineering, School of Electrical and Computer Engineering, Georgia Institute of Technology; 2005.

    Google Scholar 

  144. Donnelly RF, Morrow DI, McCrudden MT, Alkilani AZ, Vicente-Pérez EM, O'Mahony C, et al. Hydrogel-forming and dissolving microneedles for enhanced delivery of photosensitizers and precursors. PcPb. 2014;90(3):641–7.

    CAS  Google Scholar 

  145. Hardy JG, Larrañeta E, Donnelly RF, McGoldrick N, Migalska K, McCrudden MT, et al. Hydrogel-forming microneedle arrays made from light-responsive materials for on-demand transdermal drug delivery. Mol Pharm. 2016;13(3):907–14.

    Article  CAS  PubMed  Google Scholar 

  146. Yu J, Zhang Y, Ye Y, DiSanto R, Sun W, Ranson D, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci. 2015;112(27):8260–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yang S, Wu F, Liu J, Fan G, Welsh W, Zhu H, et al. Phase-transition microneedle patches for efficient and accurate transdermal delivery of insulin. Adv Funct Mater. 2015;25(29):4633–41.

    Article  CAS  Google Scholar 

  148. Donnelly RF, Singh TRR, Garland MJ, Migalska K, Majithiya R, McCrudden CM, et al. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv Funct Mater. 2012;22(23):4879–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Demir YK, Metin AÜ, Şatıroğlu B, Solmaz ME, Kayser V, Mäder K. Poly (methyl vinyl ether-co-maleic acid) – pectin based hydrogel-forming systems: gel, film, and microneedles. Eur J Pharm Biopharm. 2017;117:182–94. https://doi.org/10.1016/j.ejpb.2017.04.018.

    Article  CAS  PubMed  Google Scholar 

  150. Dardano P, Caliò A, Di Palma V, Bevilacqua MF, Di Matteo A, De Stefano L. A photolithographic approach to polymeric microneedles array fabrication. Materials. 2015;8(12):8661–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yang SY, O'Cearbhaill ED, Sisk GC, Park KM, Cho WK, Villiger M, et al. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue. Nat Commun. 2013;4:1702.

    Article  PubMed  CAS  Google Scholar 

  152. Larraneta E, Lutton RE, Brady AJ, Vicente-Pérez EM, Woolfson AD, Thakur RRS, et al. Microwave-assisted preparation of hydrogel-forming microneedle arrays for transdermal drug delivery applications. Macromol Mater Eng. 2015;300(6):586–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. McCrudden MT, Alkilani AZ, Courtenay AJ, McCrudden CM, McCloskey B, Walker C, et al. Considerations in the sterile manufacture of polymeric microneedle arrays. Drug Deliv Transl Res. 2015;5(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  154. Dorrani M, Garbuzenko OB, Minko T, Michniak-Kohn B. Development of edge-activated liposomes for siRNA delivery to human basal epidermis for melanoma therapy. J Control Release. 2016;228:150–8.

    Article  CAS  PubMed  Google Scholar 

  155. Alimardani V, Abolmaali SS, Borandeh S. Antifungal and antibacterial properties of graphene-based nanomaterials: a mini-review. J Nanostruct. 2019;9(3):402–13.

    Google Scholar 

  156. Farahavar G, Abolmaali SS, Gholijani N, Nejatollahi F. Antibody-guided nanomedicines as novel breakthrough therapeutic, diagnostic and theranostic tools. Biomater Sci. 2019;7(10):4000–16.

    Article  CAS  PubMed  Google Scholar 

  157. Larrañeta E, McCrudden MT, Courtenay AJ, Donnelly RF. Microneedles: a new frontier in nanomedicine delivery. Pharm Res. 2016;33(5):1055–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Farvadi F, Tamaddon A, Sobhani Z, Abolmaali SS. Polyionic complex of single-walled carbon nanotubes and PEG-grafted-hyperbranched polyethyleneimine (PEG-PEI-SWNT) for an improved doxorubicin loading and delivery: development and in vitro characterization. Artif Cells Nanomed Biotechnol. 2017;45(5):855–63. https://doi.org/10.1080/21691401.2016.1181642.

    Article  CAS  PubMed  Google Scholar 

  159. Abolmaali SS, Tamaddon A, Najafi H, Dinarvand R. Effect of l-histidine substitution on sol–gel of transition metal coordinated poly ethyleneimine: synthesis and biochemical characterization. J Inorg Organomet Polym Mater. 2014;24(6):977–87. https://doi.org/10.1007/s10904-014-0067-3.

    Article  CAS  Google Scholar 

  160. Indermun S, Govender M, Kumar P, Choonara YE, Pillay V. Stimuli-responsive polymers as smart drug delivery systems: classifications based on carrier type and triggered-release mechanism. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1. Elsevier; 2018. p. 43–58.

  161. Lau KG, Hattori Y, Chopra S, O’Toole EA, Storey A, Nagai T, et al. Ultra-deformable liposomes containing bleomycin: in vitro stability and toxicity on human cutaneous keratinocyte cell lines. Int J Pharm. 2005;300(1–2):4–12.

    Article  CAS  PubMed  Google Scholar 

  162. Ugurel M, Schadendorf D, Fink W, Zimpfer-Rechner C, Thoelke A, Figl R, et al. Clinical phase II study of pegylated liposomal doxorubicin as second-line treatment in disseminated melanoma. Oncol Res Treat. 2004;27(6):540–4.

    Article  CAS  Google Scholar 

  163. Leonard R, Williams S, Tulpule A, Levine A, Oliveros S. Improving the therapeutic index of anthracycline chemotherapy: focus on liposomal doxorubicin (Myocet™). Breast. 2009;18(4):218–24.

    Article  CAS  PubMed  Google Scholar 

  164. Frampton JE. Mifamurtide. Pediatr Drugs. 2010;12(3):141–53.

    Article  Google Scholar 

  165. Barenholz YC. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34.

    Article  CAS  PubMed  Google Scholar 

  166. Choi YH, Han H-K. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig. 2018;48(1):43–60. https://doi.org/10.1007/s40005-017-0370-4.

    Article  CAS  PubMed  Google Scholar 

  167. Sahu S, Saraf S, Kaur CD, Saraf S. Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin. Pak J Biol Sci. 2013;16(13):601–9 Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, CG, India University Institute of Pharmacy, Pt. Ravishankar Shukla UniversityRaipur, 492010, CG, India.

    Article  CAS  PubMed  Google Scholar 

  168. Mostoufi H, Yousefi G, Tamaddon A-m, Firouzi O. Reversing multi-drug tumor resistance to paclitaxel by well-defined pH-sensitive amphiphilic polypeptide block copolymers via induction of lysosomal membrane permeabilization. Colloids Surf B Biointerfaces. 2019;174:17–27.

  169. Sartor O. Eligard: leuprolide acetate in a novel sustained-release delivery system. Urology. 2003;61(2):25–31.

    Article  PubMed  Google Scholar 

  170. Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine. 2014;9:4357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Revia RA, Zhang M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today. 2016;19(3):157–68. https://doi.org/10.1016/j.mattod.2015.08.022.

    Article  CAS  Google Scholar 

  172. Moreira AF, Rodrigues CF, Jacinto TA, Miguel SP, Costa EC, Correia IJ. Microneedle-based delivery devices for cancer therapy: a review. Pharmacol Res. 2019;148:104438.

  173. Rejhová A, Opattová A, Čumová A, Slíva D, Vodička P. Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem. 2018;144:582–94. https://doi.org/10.1016/j.ejmech.2017.12.039.

    Article  CAS  PubMed  Google Scholar 

  174. Yu W-D, Sun G, Li J, Xu J, Wang X. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett. 2019;452:66–70. https://doi.org/10.1016/j.canlet.2019.02.048.

    Article  CAS  PubMed  Google Scholar 

  175. Eldar-Boock A, Polyak D, Scomparin A, Satchi-Fainaro R. Nano-sized polymers and liposomes designed to deliver combination therapy for cancer. Curr Opin Biotechnol. 2013;24(4):682–9.

    Article  CAS  PubMed  Google Scholar 

  176. Liao J, Li W, Peng J, Yang Q, Li H, Wei Y, et al. Combined cancer photothermal-chemotherapy based on doxorubicin/gold nanorod-loaded polymersomes. Theranostics. 2015;5(4):345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Chen M-C, Lin Z-W, Ling M-H. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano. 2015;10(1):93–101.

    Article  PubMed  CAS  Google Scholar 

  178. Dong L, Li Y, Li Z, Xu N, Liu P, Du H, et al. Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors. ACS Appl Mater Interfaces. 2018;10(11):9247–56. https://doi.org/10.1021/acsami.7b18293.

    Article  CAS  PubMed  Google Scholar 

  179. Chen M, Quan G, Wen T, Yang P, Qin W, Mai H, et al. Cold to hot: binary cooperative microneedle array amplified photo-immunotherapy for eliciting antitumor immunity and Abscopal effect. ACS Appl Mater Interfaces. 2020;12(29):32259–32269.

  180. Hally C, Rodríguez-Amigo B, Bresolí-Obach R, Planas O, Nos J, Boix-Garriga E et al. Photodynamic therapy. Theranostics and Image Guided Drug Delivery 2018. p. 86–122.

  181. Mahmoudi K, Garvey K, Bouras A, Cramer G, Stepp H, Raj JJ, et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. JNO. 2019;141(3):595–607.

    CAS  Google Scholar 

  182. Mahmoudi K, Garvey KL, Bouras A, Cramer G, Stepp H, Jesu Raj JG, et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J Neuro-Oncol. 2019;141(3):595–607. https://doi.org/10.1007/s11060-019-03103-4.

    Article  CAS  Google Scholar 

  183. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18(3):175–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Farhood B, Najafi M, Mortezaee K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol. 2019;234(6):8509–21.

    Article  CAS  PubMed  Google Scholar 

  185. Milling L, Zhang Y, Irvine DJ. Delivering safer immunotherapies for cancer. Adv Drug Del Rev. 2017;114:79–101.

    Article  CAS  Google Scholar 

  186. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. https://doi.org/10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Feng M, Xiong G, Cao Z, Yang G, Zheng S, Song X, et al. PD-1/PD-L1 and immunotherapy for pancreatic cancer. Cancer Lett. 2017;407:57–65. https://doi.org/10.1016/j.canlet.2017.08.006.

    Article  CAS  PubMed  Google Scholar 

  188. Wolchok JD, Hodi FS, Weber JS, Allison JP, Urba WJ, Robert C, et al. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. ANYAS. 2013;1291(1):1–13.

    Article  CAS  Google Scholar 

  189. Palucka K, Ueno H, Fay J, Banchereau J. Dendritic cells and immunity against cancer. J Intern Med. 2011;269(1):64–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Elamanchili P, Diwan M, Cao M, Samuel J. Characterization of poly (D, L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine. 2004;22(19):2406–12.

    Article  CAS  PubMed  Google Scholar 

  191. Zaric M, Lyubomska O, Touzelet O, Poux C, Al-Zahrani S, Fay F, et al. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D, L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano. 2013;7(3):2042–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Liu M. DNA vaccines: a review. J Intern Med. 2003;253(4):402–10.

    Article  CAS  PubMed  Google Scholar 

  193. Lopes A, Vandermeulen G, Préat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res. 2019;38(1):146.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Arya J, Prausnitz MR. Microneedle patches for vaccination in developing countries. J Control Release. 2016;240:135–41.

    Article  CAS  PubMed  Google Scholar 

  195. Kim Y-C, Quan F-S, Yoo D-G, Compans RW, Kang S-M, Prausnitz MR. Enhanced memory responses to seasonal H1N1 influenza vaccination of the skin with the use of vaccine-coated microneedles. J Infect Dis. 2010;201(2):190–8.

    Article  CAS  PubMed  Google Scholar 

  196. Raphael AP, Crichton ML, Falconer RJ, Meliga S, Chen X, Fernando GJ, et al. Formulations for microprojection/microneedle vaccine delivery: structure, strength and release profiles. J Control Release. 2016;225:40–52.

    Article  CAS  PubMed  Google Scholar 

  197. Bachy V, Hervouet C, Becker PD, Chorro L, Carlin LM, Herath S, et al. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays. Proc Natl Acad Sci. 2013;110(8):3041–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Edens C, Collins ML, Goodson JL, Rota PA, Prausnitz MR. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine. 2015;33(37):4712–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Liao J-F, Lee J-C, Lin C-K, Wei K-C, Chen P-Y, Yang H-W. Self-assembly DNA polyplex vaccine inside dissolving microneedles for high-potency intradermal vaccination. Theranostics. 2017;7(10):2593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Münger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 2004;78(21):11451–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Schiller JT, Müller M. Next generation prophylactic human papillomavirus vaccines. The Lancet Oncology. 2015;16(5):e217–e25.

    Article  CAS  PubMed  Google Scholar 

  202. Yang B, Yang A, Peng S, Pang X, Roden RB, Wu T-C, et al. Co-administration with DNA encoding papillomavirus capsid proteins enhances the antitumor effects generated by therapeutic HPV DNA vaccination. Cell Biosci. 2015;5(1):35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Bloy N, Buqué A, Aranda F, Castoldi F, Eggermont A, Cremer I, et al. Trial watch: naked and vectored DNA-based anticancer vaccines. Oncoimmunology. 2015;4(5):e1026531.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Huang D, Zhao D, Huang Y, Liang Z, Li Z eds. Microneedle roller electrode array (M-REA): a new tool for in vivo low-voltage electric gene delivery. Micro electro mechanical systems (MEMS), 2018 IEEE; 2018: IEEE.

  205. Pan J, Ruan W, Qin M, Long Y, Wan T, Yu K, et al. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci Rep. 2018;8(1):1117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Choi S-O, Kim YC, Park J-H, Hutcheson J, Gill HS, Yoon Y-K, et al. An electrically active microneedle array for electroporation. BioMi. 2010;12(2):263–73. https://doi.org/10.1007/s10544-009-9381-x.

    Article  Google Scholar 

  207. Prausnitz MR. The effects of electric current applied to skin: a review for transdermal drug delivery. Adv Drug Del Rev. 1996;18(3):395–425.

    Article  CAS  Google Scholar 

  208. Miller PR, Xiao X, Brener I, Burckel DB, Narayan R, Polsky R. Microneedle-based transdermal sensor for on-chip potentiometric determination of K+. Adv Healthc Mater. 2014;3(6):876–81.

    Article  CAS  PubMed  Google Scholar 

  209. Meric-Bernstam F, Mills GB. Overcoming implementation challenges of personalized cancer therapy. Nat Rev Clin Oncol. 2012;9(9):542.

    Article  CAS  PubMed  Google Scholar 

  210. Tran BQ, Miller PR, Taylor RM, Boyd G, Mach PM, Rosenzweig CN, et al. Proteomic characterization of dermal interstitial fluid extracted using a novel microneedle-assisted technique. J Proteome Res. 2018;17(1):479–85.

    Article  CAS  PubMed  Google Scholar 

  211. Mohan AMV, Windmiller JR, Mishra RK, Wang J. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosens Bioelectron. 2017;91:574–9. https://doi.org/10.1016/j.bios.2017.01.016.

    Article  CAS  PubMed  Google Scholar 

  212. Lee SJ, Yoon HS, Xuan X, Park JY, Paik S-J, Allen MG. A patch type non-enzymatic biosensor based on 3D SUS micro-needle electrode array for minimally invasive continuous glucose monitoring. Sensors Actuators B Chem. 2016;222:1144–51. https://doi.org/10.1016/j.snb.2015.08.013.

    Article  CAS  Google Scholar 

  213. Zahn JD, deshmukh A, Pisano AP, Liepmann D. Continuous on-chip micropumping for microneedle enhanced drug delivery. BioMi. 2004;6(3):183–90. https://doi.org/10.1023/B:BMMD.0000042047.83433.96.

    Article  CAS  Google Scholar 

  214. Yan X, Li H, Zheng W, Su X. Visual and fluorescent detection of tyrosinase activity by using a dual-emission ratiometric fluorescence probe. AnaCh. 2015;87(17):8904–9. https://doi.org/10.1021/acs.analchem.5b02037.

    Article  CAS  Google Scholar 

  215. Rao AR, Sindhuja HN, Dharmesh SM, Sankar KU, Sarada R, Ravishankar GA. Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis. J Agric Food Chem. 2013;61(16):3842–51. https://doi.org/10.1021/jf304609j.

    Article  CAS  PubMed  Google Scholar 

  216. Ciui B, Martin A, Mishra RK, Brunetti B, Nakagawa T, Dawkins TJ, et al. Wearable wireless tyrosinase bandage and microneedle sensors: toward melanoma screening. Adv Healthc Mater. 2018;7(7):1701264.

    Article  CAS  Google Scholar 

  217. Rubin EH, Gilliland DG. Drug development and clinical trials—the path to an approved cancer drug. Nat Rev Clin Oncol. 2012;9(4):215.

    Article  CAS  PubMed  Google Scholar 

  218. Jonas O, Landry HM, Fuller JE, Santini JT, Baselga J, Tepper RI, et al. An implantable microdevice to perform high-throughput in vivo drug sensitivity testing in tumors. Sci Transl Med. 2015;7(284):284ra57.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Haq M, Smith E, John DN, Kalavala M, Edwards C, Anstey A, et al. Clinical administration of microneedles: skin puncture, pain and sensation. BioMi. 2009;11(1):35–47.

    CAS  Google Scholar 

  220. Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of microneedle design on pain in human subjects. Clin J Pain. 2008;24(7):585.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Noh Y-W, Kim T-H, Baek J-S, Park H-H, Lee SS, Han M, et al. In vitro characterization of the invasiveness of polymer microneedle against skin. Int J Pharm. 2010;397(1–2):201–5.

    Article  CAS  PubMed  Google Scholar 

  222. Al-Kasasbeh R, Brady AJ, Courtenay AJ, Larrañeta E, McCrudden MT, O’Kane D, et al. Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches. Drug Deliv Transl Res. 2020;10:690–705.

  223. Zahn JD, Pisano AP, Liepmann D. Continuous on-chip micropumping for microneedle enhanced drug delivery. BioMi. 2004;6(3):183–90.

    CAS  Google Scholar 

Download references

Acknowledgments

This work supported by grant from Shiraz University of Medical Sciences (SUMS), Shiraz, Iran. The authors wish to thank Mr. H. Argasi at the Research Consultation Center (RCC) of Shiraz University of Medical Sciences for his invaluable assistance in editing this manuscript.

Funding

This article is a part of Mr. Vahid Alimardani thesis funded by Shiraz University of Medical Sciences under supervision of Dr. Samirasadat Abolmaali.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have significantly contributed to the concept and writing of manuscript.

Corresponding authors

Correspondence to Samira Sadat Abolmaali or Mohammad Ashfaq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alimardani, V., Abolmaali, S.S., Tamaddon, A.M. et al. Recent advances on microneedle arrays-mediated technology in cancer diagnosis and therapy. Drug Deliv. and Transl. Res. 11, 788–816 (2021). https://doi.org/10.1007/s13346-020-00819-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00819-z

Keywords

Navigation