Injection route affects intra-articular hyaluronic acid distribution and clinical outcome in viscosupplementation treatment for knee osteoarthritis: a combined cadaver study and randomized clinical trial

Abstract

The coverage of hyaluronic acid (HA) on the impaired cartilage should be the precondition to exert its beneficial effect on knee osteoarthritis (KOA) according to the pharmacological mechanism. However, the intra-articular distribution of HA might be correlated with the route of drug delivery. Forty-two cadaver knees with radiographic evidence of osteoarthritis were given anteromedial (AM) or medial midpatellar (MMP) injection of HA (molecular weight 600–1500 kD) followed by gait stimulation. Although 2.5 ml HA delivered through both routes failed to cover the entire cartilage, HA covered 96.12% cartilage of patellofemoral joint (PFJ) and 71.44% of medial femorotibial joint (FTJ) through MMP route, whereas mainly distributed into FTJ and posterior condyles through AM route. HA in the MMP group distributed more in PFJ than that in the AM group (P < 0.001), but no significant difference presented in medial FTJ (P = 0.084). The clinical efficacy was also associated with the route of drug delivery. One hundred patients with unilateral mild-to-moderate KOA were recruited and randomly assigned to receive five weekly HA injections with AM route (n = 50) or MMP route (n = 50). Patients in the MMP group obtained better improvement in WOMAC index total score, pain score, stiffness score, and Lequesne index total score over the entire follow-up period, as compared to patients in the AM group (all P < 0.01). More patients in the MMP group claimed pain relief (71.7%, P = 0.024) and felt satisfying (63.1%, P = 0.007) than in the AM group at the end of follow-up. Therefore, intra-articular HA injection through MMP route is recommended in treating mild-to-moderate KOA.

.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Dieppe PA, Lohmander LS. Pathogenesis and management of pain in osteoarthritis. Lancet. 2005;365(9463):965–73. https://doi.org/10.1016/S0140-6736(05)71086-2.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Moreland LW. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action. Arthritis Res Ther. 2003;5(2):54–67.

    CAS  Article  Google Scholar 

  3. 3.

    Altman RD, Rosen JE, Bloch DA, Hatoum HT, Korner P. A double-blind, randomized, saline-controlled study of the efficacy and safety of EUFLEXXA for treatment of painful osteoarthritis of the knee, with an open-label safety extension (the FLEXX trial). Semin Arthritis Rheum. 2009;39(1):1–9. https://doi.org/10.1016/j.semarthrit.2009.04.001.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Navarro-Sarabia F, Coronel P, Collantes E, Navarro FJ, de la Serna AR, Naranjo A, et al. A 40-month multicentre, randomised placebo-controlled study to assess the efficacy and carry-over effect of repeated intra-articular injections of hyaluronic acid in knee osteoarthritis: the AMELIA project. Ann Rheum Dis. 2011;70(11):1957–62. https://doi.org/10.1136/ard.2011.152017.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Altman RD, Bedi A, Karlsson J, Sancheti P, Schemitsch E. Product differences in intra-articular hyaluronic acids for osteoarthritis of the knee. Am J Sports Med. 2016;44(8):2158–65. https://doi.org/10.1177/0363546515609599.

    Article  PubMed  Google Scholar 

  6. 6.

    Guo Y, Yang P, Liu L. Origin and efficacy of hyaluronan injections in knee osteoarthritis: randomized, double-blind trial. Med Sci Monit. 2018;24:4728–37. https://doi.org/10.12659/msm.908797.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Trojian TH, Concoff AL, Joy SM, Hatzenbuehler JR, Saulsberry WJ, Coleman CI. AMSSM scientific statement concerning viscosupplementation injections for knee osteoarthritis: importance for individual patient outcomes. Br J Sports Med. 2016;50(2):84–92. https://doi.org/10.1136/bjsports-2015-095683.

    Article  PubMed  Google Scholar 

  8. 8.

    Conrozier T, Mathieu P, Schott AM, Laurent I, Hajri T, Crozes P, et al. Factors predicting long-term efficacy of Hylan GF-20 viscosupplementation in knee osteoarthritis. Joint Bone Spine. 2003;70(2):128–33.

    Article  Google Scholar 

  9. 9.

    Altman RD, Dasa V, Takeuchi J. Review of the mechanism of action for Supartz FX in knee osteoarthritis. Cartilage. 2018;9(1):11–20. https://doi.org/10.1177/1947603516684588.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Pradal J, Maudens P, Gabay C, Seemayer CA, Jordan O, Allemann E. Effect of particle size on the biodistribution of nano- and microparticles following intra-articular injection in mice. Int J Pharm. 2016;498(1–2):119–29. https://doi.org/10.1016/j.ijpharm.2015.12.015.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494–502.

    CAS  Article  Google Scholar 

  12. 12.

    Esenyel C, Demirhan M, Esenyel M, Sonmez M, Kahraman S, Senel B, et al. Comparison of four different intra-articular injection sites in the knee: a cadaver study. Knee Surg Sports Traumatol Arthrosc. 2007;15(5):573–7. https://doi.org/10.1007/s00167-006-0231-6.

    Article  PubMed  Google Scholar 

  13. 13.

    Wind WM Jr, Smolinski RJ. Reliability of common knee injection sites with low-volume injections. J Arthroplast. 2004;19(7):858–61. https://doi.org/10.1016/j.arth.2004.02.042.

    Article  Google Scholar 

  14. 14.

    Podraza JT, White SC. Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: implications for the non-contact mechanism of ACL injury. Knee. 2010;17(4):291–5. https://doi.org/10.1016/j.knee.2010.02.013.

    Article  PubMed  Google Scholar 

  15. 15.

    Makinejad MD, Abu Osman NA, Abu Bakar Wan Abas W, Bayat M. Preliminary analysis of knee stress in full extension landing. Clinics. 2013;68(9):1180–8. https://doi.org/10.6061/clinics/2013(09)02.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Abid M, Mezghani N, Mitiche A. Knee joint biomechanical gait data classification for knee pathology assessment: a literature review. Appl Bionics Biomech. 2019;2019:1–14.

    Article  Google Scholar 

  17. 17.

    Elbaz A, Mor A, Segal G, Debi R, Shazar N, Herman A. Novel classification of knee osteoarthritis severity based on spatiotemporal gait analysis. Osteoarthr Cartil. 2014;22(3):457–63. https://doi.org/10.1016/j.joca.2013.12.015.

    CAS  Article  Google Scholar 

  18. 18.

    McCarthy I, Hodgins D, Mor A, Elbaz A, Segal G. Analysis of knee flexion characteristics and how they alter with the onset of knee osteoarthritis: a case control study. BMC Musculoskelet Disord. 2013;14(1):169. https://doi.org/10.1186/1471-2474-14-169.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Bergmann G, Bender A, Graichen F, Dymke J, Rohlmann A, Trepczynski A, et al. Standardized loads acting in knee implants. PLoS One. 2014;9(1):e86035. https://doi.org/10.1371/journal.pone.0086035.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sutton LG, Werner FW, Haider H, Hamblin T, Clabeaux JJ. In vitro response of the natural cadaver knee to the loading profiles specified in a standard for knee implant wear testing. J Biomech. 2010;43(11):2203–7. https://doi.org/10.1016/j.jbiomech.2010.03.042.

    Article  PubMed  Google Scholar 

  21. 21.

    Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, et al. Whole-organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil. 2004;12(3):177–90. https://doi.org/10.1016/j.joca.2003.11.003.

    CAS  Article  Google Scholar 

  22. 22.

    Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986;29(8):1039–49.

    CAS  Article  Google Scholar 

  23. 23.

    Wluka AE, Stuckey S, Snaddon J, Cicuttini FM. The determinants of change in tibial cartilage volume in osteoarthritic knees. Arthritis Rheum. 2002;46(8):2065–72. https://doi.org/10.1002/art.10460.

    Article  PubMed  Google Scholar 

  24. 24.

    Berenbaum F, Grifka J, Cazzaniga S, D’Amato M, Giacovelli G, Chevalier X, et al. A randomised, double-blind, controlled trial comparing two intra-articular hyaluronic acid preparations differing by their molecular weight in symptomatic knee osteoarthritis. Ann Rheum Dis. 2012;71(9):1454–60. https://doi.org/10.1136/annrheumdis-2011-200972.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Wittes J. Sample size calculations for randomized controlled trials. Epidemiol Rev. 2002;24(1):39–53.

    Article  Google Scholar 

  26. 26.

    Jackson DW, Evans NA, Thomas BM. Accuracy of needle placement into the intra-articular space of the knee. J Bone Joint Surg Am. 2002;84-A(9):1522–7.

    Article  Google Scholar 

  27. 27.

    Henrotin Y, Raman R, Richette P, Bard H, Jerosch J, Conrozier T, et al. Consensus statement on viscosupplementation with hyaluronic acid for the management of osteoarthritis. Semin Arthritis Rheum. 2015;45(2):140–9. https://doi.org/10.1016/j.semarthrit.2015.04.011.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Bellamy N, Campbell J, Stevens J, Pilch L, Stewart C, Mahmood Z. Validation study of a computerized version of the Western Ontario and McMaster Universities VA3.0 Osteoarthritis Index. J Rheumatol. 1997;24(12):2413–5.

    CAS  PubMed  Google Scholar 

  29. 29.

    Lequesne MG, Mery C, Samson M, Gerard P. Indexes of severity for osteoarthritis of the hip and knee. Validation--value in comparison with other assessment tests. Scand J Rheumatol Suppl. 1987;65:85–9.

    CAS  Article  Google Scholar 

  30. 30.

    van der Weegen W, Wullems JA, Bos E, Noten H, van Drumpt RA. No difference between intra-articular injection of hyaluronic acid and placebo for mild to moderate knee osteoarthritis: a randomized, controlled, double-blind trial. J Arthroplast. 2015;30(5):754–7. https://doi.org/10.1016/j.arth.2014.12.012.

    Article  Google Scholar 

  31. 31.

    Maheu E, Bannuru RR, Herrero-Beaumont G, Allali F, Bard H, Migliore A. Why we should definitely include intra-articular hyaluronic acid as a therapeutic option in the management of knee osteoarthritis: results of an extensive critical literature review. Semin Arthritis Rheum. 2019;48(4):563–72. https://doi.org/10.1016/j.semarthrit.2018.06.002.

    Article  PubMed  Google Scholar 

  32. 32.

    Legre-Boyer V. Viscosupplementation: techniques, indications, results. Orthop Traumatol Surg Res. 2015;101(1 Suppl):S101–8. https://doi.org/10.1016/j.otsr.2014.07.027.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Toda Y, Tsukimura N. A comparison of intra-articular hyaluronan injection accuracy rates between three approaches based on radiographic severity of knee osteoarthritis. Osteoarthr Cartil. 2008;16(9):980–5. https://doi.org/10.1016/j.joca.2008.01.003.

    CAS  Article  Google Scholar 

  34. 34.

    Jackson DW, Simon TM. Intra-articular distribution and residence time of Hylan A and B: a study in the goat knee. Osteoarthr Cartil. 2006;14(12):1248–57. https://doi.org/10.1016/j.joca.2006.05.015.

    CAS  Article  Google Scholar 

  35. 35.

    Luo Y, Lin B, Xiao J, Shi Z. Iohexol tracing of hyaluronic acid distribution in the knee joint cavity of rabbits. Nan fang yi ke da xue xue bao J South Med Univ. 2015;35(6):820–5.

    CAS  Google Scholar 

  36. 36.

    Brandt KD, Smith GN Jr, Simon LS. Intraarticular injection of hyaluronan as treatment for knee osteoarthritis: what is the evidence? Arthritis Rheum. 2000;43(6):1192–203. https://doi.org/10.1002/1529-0131(200006)43:6<1192::AID-ANR2>3.0.CO;2-L.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Bonnevie ED, Delco ML, Bartell LR, Jasty N, Cohen I, Fortier LA, et al. Microscale frictional strains determine chondrocyte fate in loaded cartilage. J Biomech. 2018;74:72–8. https://doi.org/10.1016/j.jbiomech.2018.04.020.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Bonnevie ED, Galesso D, Secchieri C, Bonassar LJ. Frictional characterization of injectable hyaluronic acids is more predictive of clinical outcomes than traditional rheological or viscoelastic characterization. PLoS One. 2019;14(5):e0216702. https://doi.org/10.1371/journal.pone.0216702.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Singh A, Corvelli M, Unterman SA, Wepasnick KA, McDonnell P, Elisseeff JH. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid. Nat Mater. 2014;13(10):988–95. https://doi.org/10.1038/nmat4048.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Tobetto K, Nakai K, Akatsuka M, Yasui T, Ando T, Hirano S. Inhibitory effects of hyaluronan on neutrophil-mediated cartilage degradation. Connect Tissue Res. 1993;29(3):181–90. https://doi.org/10.3109/03008209309016825.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Arrich J, Piribauer F, Mad P, Schmid D, Klaushofer K, Müllner M. Intra-articular hyaluronic acid for the treatment of osteoarthritis of the knee: systematic review and meta-analysis. CMAJ. 2005;172(8):1039–43.

    Article  Google Scholar 

  42. 42.

    Brown TJ, Laurent UB, Fraser JR. Turnover of hyaluronan in synovial joints: elimination of labelled hyaluronan from the knee joint of the rabbit. Exp Physiol. 1991;76(1):125–34. https://doi.org/10.1113/expphysiol.1991.sp003474.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Altman RD, Manjoo A, Fierlinger A, Niazi F, Nicholls M. The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: a systematic review. BMC Musculoskelet Disord. 2015;16:321. https://doi.org/10.1186/s12891-015-0775-z.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Komatsu S, Iwata H, Nabeshima T. Studies on the kinetics, metabolism and re-utilisation after intra-articular administration of hyaluronan to rabbits. Arzneimittel-Forschung. 1999;49(5):427–33. https://doi.org/10.1055/s-0031-1300438.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Akmal M, Singh A, Anand A, Kesani A, Aslam N, Goodship A, et al. The effects of hyaluronic acid on articular chondrocytes. J Bone Joint Surg Br Vol. 2005;87(8):1143–9.

    CAS  Article  Google Scholar 

  46. 46.

    Chareancholvanich K, Pornrattanamaneewong C, Narkbunnam R. Increased cartilage volume after injection of hyaluronic acid in osteoarthritis knee patients who underwent high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2014;22(6):1415–23. https://doi.org/10.1007/s00167-013-2735-1.

    Article  PubMed  Google Scholar 

  47. 47.

    Grenier S, Donnelly PE, Gittens J, Torzilli PA. Resurfacing damaged articular cartilage to restore compressive properties. J Biomech. 2015;48(1):122–9. https://doi.org/10.1016/j.jbiomech.2014.10.023.

    Article  PubMed  Google Scholar 

  48. 48.

    Hideki Sato MD, Takahashi T, Ide H, Toshiyuki Fukushima MD, Minoru Tabata MD, Fusao Sekine MD, et al. Antioxidant activity of synovial fluid, hyaluronic acid, and two subcomponents of hyaluronic acid. synovial fluid scavenging effect is enhanced in rheumatoid arthritis patients. Arthritis Rheum. 1988;31(1):63.

    Article  Google Scholar 

  49. 49.

    Larsen NE, Lombard KM, Parent EG, Balazs EA. Effect of hylan on cartilage and chondrocyte cultures. J Orthop Res. 1992;10(1):23–32.

    CAS  Article  Google Scholar 

  50. 50.

    Ghosh P, Guidolin D. Potential mechanism of action of intra-articular hyaluronan therapy in osteoarthritis: are the effects molecular weight dependent? Semin Arthritis Rheum. 2002;32(1):10–37.

    CAS  Article  Google Scholar 

  51. 51.

    Gomis A, Pawlak M, Balazs EA, Schmidt RF, Belmonte C. Effects of different molecular weight elastoviscous hyaluronan solutions on articular nociceptive afferents. Arthritis Rheum. 2004;50(1):314–26. https://doi.org/10.1002/art.11421.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Pozo MA, Balazs EA, Belmonte C. Reduction of sensory responses to passive movements of inflamed knee joints by hylan, a hyaluronan derivative. Exp Brain Res. 1997;116(1):3–9.

    CAS  Article  Google Scholar 

  53. 53.

    Haris M, Singh A, Reddy S, Bagga P, Kneeland JB, Tjoumakaris FP, et al. Characterization of viscosupplementation formulations using chemical exchange saturation transfer (ViscoCEST). J Transl Med. 2016;14:92.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the staff of anatomy department for their important support and help, the National Natural Science Foundation of China (NNSFC) for the fund source support, and Tahsin Tarik Torsha and Dr. Cindy for the generous help in modifying the grammar and spelling.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Xiao.

Ethics declarations

Conflict of interest

Jun Xiao receives a grant (81101389) from the National Natural Science Foundation of China (NNSFC) to support the current research, but there is no financial conflict to disclose. The rest of the authors also certify that he or she has no commercial associations that might pose a conflict of interest in connection with the submitted article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Hu, Y., Huang, L. et al. Injection route affects intra-articular hyaluronic acid distribution and clinical outcome in viscosupplementation treatment for knee osteoarthritis: a combined cadaver study and randomized clinical trial. Drug Deliv. and Transl. Res. 11, 279–291 (2021). https://doi.org/10.1007/s13346-020-00793-6

Download citation

Keywords

  • Hyaluronate
  • Intra-articular distribution
  • Knee
  • Osteoarthritis
  • Medial midpatellar portal