Skip to main content

Advertisement

Log in

Radiation-synthesis of chitosan/poly (acrylic acid) nanogel for improving the antitumor potential of rutin in hepatocellular carcinoma

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The current study aimed to investigate the ability of chitosan/poly (acrylic acid) nanogel (CAN) to improve the bioavailability and anticancer potential of rutin. Synthesis of CAN was carried out by gamma radiation-induced polymerization of acrylic acid in an aqueous solution of chitosan. The relationship between the hydrodynamic radius of CAN and the absorbed radiation doses was also investigated. The prepared nanogels were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) techniques, and then, it was used as a nano-drug carrier for rutin. The developed formulation was evaluated for its antitumor activity against chemically induced hepatocarcinoma in rats. The following parameters were measured: aspartate and alanine aminotransferase, alkaline phosphatase, gamma glutamyltransferase, and total bilirubin as liver function test; vascular endothelial growth factor as an angiogenesis marker; α-fetoprotein as a tumor marker; and P53, caspase-3, Bax, and Bcl-2 as apoptosis markers. Histopathological examination was also confirmed. Significant enhanced anti-proliferative, anti-angiogenic, and apoptotic effects were observed for rutin-loaded CAN than free rutin, indicating that this formulation could provide a novel therapeutic approach to serve as a promising agent for treatment of hepatocellular carcinoma.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Samonakis DN, Kouroumalis EA. Systemic treatment for hepatocellular carcinoma: still unmet expectations. World J Hepatol. 2017;9(2):80.

    PubMed  PubMed Central  Google Scholar 

  2. Chen J-T, Ma R, Sun S-C, Zhu X-F, Xu X-L, Mu Q. Synthesis and biological evaluation of cyclopeptide GG-8-6 and its analogues as anti-hepatocellular carcinoma agents. Bioorg Med Chem. 2018;26(3):609–22.

    CAS  PubMed  Google Scholar 

  3. Anwar F, Al-Abbasi F, Bhatt PC, Ahmad A, Sethi N, Kumar V. Umbelliferone β-d-galactopyranoside inhibits chemically induced renal carcinogenesis via alteration of oxidative stress, hyperproliferation and inflammation: possible role of NF-κB. Toxicol Res. 2015;4(5):1308–23.

    CAS  Google Scholar 

  4. Verma A, Ahmed B, Anwar F, Rahman M, Patel DK, Kaithwas G, et al. Novel glycoside from Wedelia calendulacea inhibits diethyl nitrosamine-induced renal cancer via downregulating the COX-2 and PEG 2 through nuclear factor-κB pathway. Inflammopharmacology. 2017;25(1):159–75.

    CAS  PubMed  Google Scholar 

  5. Hemieda F, Serag H, El-Baz E, Ramadan S. Therapeutic efficacy of licorice and/or cisplatin against diethylnitrosamine and carbon tetrachloride-induced hepatocellular carcinoma in rats. J Am Sci. 2016;12:10–9.

    Google Scholar 

  6. Pandey P, Bhatt PC, Rahman M, Patel DK, Anwar F, Al-Abbasi F, et al. Preclinical renal chemo-protective potential of Prunus amygdalus Batsch seed coat via alteration of multiple molecular pathways. Arch Physiol Biochem. 2018;124(1):88–96.

    CAS  PubMed  Google Scholar 

  7. Ghaffar AA, Radwan RR, Ali H. Radiation synthesis of poly (starch/acrylic acid) pH sensitive hydrogel for rutin controlled release. Int J Biol Macromol. 2016;92:957–64.

    PubMed  Google Scholar 

  8. Ma J-Q, Liu C-M, Yang W. Protective effect of rutin against carbon tetrachloride-induced oxidative stress, inflammation and apoptosis in mouse kidney associated with the ceramide, MAPKs, p53 and calpain activities. Chem Biol Interact. 2018;286:26–33.

    CAS  PubMed  Google Scholar 

  9. Iriti M, Kubina R, Cochis A, Sorrentino R, Varoni EM, Kabała-Dzik A, et al. Rutin, a quercetin glycoside, restores chemosensitivity in human breast cancer cells. Phytother Res. 2017;31(10):1529–38.

    CAS  PubMed  Google Scholar 

  10. Ahmad M, Sahabjada JA, Hussain A, Badaruddeen MA, Mishra A. Development of a new rutin nanoemulsion and its application on prostate carcinoma PC3 cell line. EXCLI J. 2017;16:810.

    PubMed  PubMed Central  Google Scholar 

  11. Ahmad M, Mishra A, Usmani A, Ahmad MP. Dietary agents and Phytochemicals in the Prevention and treatment of hepatocellular carcinoma. Med Phoenix. 2017;2(1):52–62.

    Google Scholar 

  12. Guon TE, Chung HS. Hyperoside and rutin of Nelumbo nucifera induce mitochondrial apoptosis through a caspase-dependent mechanism in HT-29 human colon cancer cells. Oncol Lett. 2016;11(4):2463–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. ben Sghaier M, Pagano A, Mousslim M, Ammari Y, Kovacic H, Luis J. Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells. Biomed Pharmacother. 2016;84:1972–8.

    PubMed  Google Scholar 

  14. Lin JP, Yang JS, Lin JJ, Lai KC, Lu HF, Ma CY, et al. Rutin inhibits human leukemia tumor growth in a murine xenograft model in vivo. Environ Toxicol. 2012;27(8):480–4.

    CAS  PubMed  Google Scholar 

  15. Santos B, Silva A, Pitanga B, Sousa C, Grangeiro M, Fragomeni B, et al. Antiproliferative, proapoptotic and morphogenic effects of the flavonoid rutin on human glioblastoma cells. Food Chem. 2011;127(2):404–11.

    CAS  PubMed  Google Scholar 

  16. Chen H, Miao Q, Geng M, Liu J, Hu Y, Tian L et al. Anti-tumor effect of rutin on human neuroblastoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis. Sci World J 2013;2013.

  17. Ananth DA, Rameshkumar A, Jeyadevi R, Jagadeeswari S, Nagarajan N, Renganathan R, et al. Antibacterial potential of rutin conjugated with thioglycolic acid capped cadmium telluride quantum dots (TGA-CdTe QDs). Spectrochim Acta A Mol Biomol Spectrosc. 2015;138:684–92.

    CAS  PubMed  Google Scholar 

  18. Roy AS, Tripathy DR, Samanta S, Ghosh SK, Dasgupta S. DNA damaging, cell cytotoxicity and serum albumin binding efficacy of the rutin–Cu (II) complex. Mol BioSyst. 2016;12(5):1687–701.

    CAS  PubMed  Google Scholar 

  19. Deepika MS, Thangam R, Sheena TS, Sasirekha R, Sivasubramanian S, Babu MD, et al. A novel rutin-fucoidan complex based phytotherapy for cervical cancer through achieving enhanced bioavailability and cancer cell apoptosis. Biomed Pharmacother. 2019;109:1181–95.

    CAS  PubMed  Google Scholar 

  20. Ikeda NEA, Novak EM, Maria DA, Velosa AS, Pereira RMS. Synthesis, characterization and biological evaluation of Rutin–zinc (II) flavonoid-metal complex. Chem Biol Interact. 2015;239:184–91.

    CAS  PubMed  Google Scholar 

  21. Ahmad H, Arya A, Agrawal S, Mall P, Samuel SS, Sharma K, et al. Rutin phospholipid complexes confer neuro-protection in ischemic-stroke rats. RSC Adv. 2016;6(99):96445–54.

    CAS  Google Scholar 

  22. Adamo G, Grimaldi N, Campora S, Bulone D, Bondì M, Al-Sheikhly M, et al. Multi-functional nanogels for tumor targeting and redox-sensitive drug and siRNA delivery. Molecules. 2016;21(11):1594.

    PubMed Central  Google Scholar 

  23. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60(15):1638–49.

    CAS  PubMed  Google Scholar 

  24. Soni G, Yadav KS. Nanogels as potential nanomedicine carrier for treatment of cancer: a mini review of the state of the art. Saudi Pharma J. 2016;24(2):133–9.

    Google Scholar 

  25. Soni KS, Desale SS, Bronich TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Control Release. 2016;240:109–26.

    CAS  PubMed  Google Scholar 

  26. Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv. 2017;24(1):539–57.

    CAS  PubMed  Google Scholar 

  27. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci. 2008;33(4):448–77.

    CAS  Google Scholar 

  28. Ditta LA, Dahlgren B, Sabatino MA, Dispenza C, Jonsson M. The role of molecular oxygen in the formation of radiation-engineered multifunctional nanogels. Eur Polym J. 2019;114:164–75.

    CAS  Google Scholar 

  29. Sütekin SD, Güven O. Application of radiation for the synthesis of poly (n-vinyl pyrrolidone) nanogels with controlled sizes from aqueous solutions. Appl Radiat Isot. 2019;145:161–9.

    Google Scholar 

  30. Sadat Ebrahimi MM, Schönherr H. Enzyme-sensing chitosan hydrogels. Langmuir. 2014;30(26):7842–50.

    CAS  PubMed  Google Scholar 

  31. Hu Y, Jiang X, Ding Y, Ge H, Yuan Y, Yang C. Synthesis and characterization of chitosan–poly (acrylic acid) nanoparticles. Biomaterials. 2002;23(15):3193–201.

    CAS  PubMed  Google Scholar 

  32. Radwan RR, Zaher NH, El-Gazzar MG. Novel 1, 2, 4-triazole derivatives as antitumor agents against hepatocellular carcinoma. Chem Biol Interact. 2017;274:68–79.

    CAS  PubMed  Google Scholar 

  33. Ahn J-S, Choi H-K, Cho C-S. A novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of chitosan. Biomaterials. 2001;22(9):923–8.

    CAS  PubMed  Google Scholar 

  34. Yamashita S, Hiroki A, Taguchi M. Radiation-induced change of optical property of hydroxypropyl cellulose hydrogel containing methacrylate compounds: as a basis for development of a new type of radiation dosimeter. Radiat Phys Chem. 2014;101:53–8.

    CAS  Google Scholar 

  35. Binh D, Hong PTT, Duy NN, Duoc NT, Dieu NN. A study on size effect of carboxymethyl starch nanogel crosslinked by electron beam radiation. Radiat Phys Chem. 2012;81(7):906–12.

    CAS  Google Scholar 

  36. Hu Y, Chen Y, Chen Q, Zhang L, Jiang X, Yang C. Synthesis and stimuli-responsive properties of chitosan/poly (acrylic acid) hollow nanospheres. Polymer. 2005;46(26):12703–10.

    CAS  Google Scholar 

  37. Radwan RR, Abdel Ghaffar AM, Ali HE. Gamma radiation preparation of chitosan nanoparticles for controlled delivery of memantine. J Biomater Appl 2019:0885328219890071.

  38. Zhang Y, Wang Z, Wang Y, Zhao J, Wu C. Facile preparation of pH-responsive gelatin-based core–shell polymeric nanoparticles at high concentrations via template polymerization. Polymer. 2007;48(19):5639–45.

    CAS  Google Scholar 

  39. Loutfy SA, El-Din HMA, Elberry MH, Allam NG, Hasanin M, Abdellah AM. Synthesis, characterization and cytotoxic evaluation of chitosan nanoparticles: in vitro liver cancer model. Adv Nat Sci Nanosci Nanotechnol. 2016;7(3):035008.

    Google Scholar 

  40. Dai J, Yan H, Yang H, Cheng R. Simple method for preparation of chitosan/poly (acrylic acid) blending hydrogel beads and adsorption of copper (II) from aqueous solutions. Chem Eng J. 2010;165(1):240–9.

    CAS  Google Scholar 

  41. Mansur HS, Sadahira CM, Souza AN, Mansur AA. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C. 2008;28(4):539–48.

    CAS  Google Scholar 

  42. Zheng Y, Huang D, Wang A. Chitosan-g-poly (acrylic acid) hydrogel with crosslinked polymeric networks for Ni2+ recovery. Anal Chim Acta. 2011;687(2):193–200.

    CAS  PubMed  Google Scholar 

  43. Soni H, Singhai A. Formulation and development of hydrogel based system for effective delivery of rutin. Int J Appl Pharm. 2013;5(1):5–13.

    CAS  Google Scholar 

  44. El-Arnaouty M, Eid M, Abdel GA. Radiation synthesis of stimuli responsive micro-porous hydrogels for controlled drug release of aspirin. Polym-Plast Technol Eng. 2015;54(12):1215–22.

    CAS  Google Scholar 

  45. Ghosh A, Ghosh D, Sarkar S, Mandal AK, Choudhury ST, Das N. Anticarcinogenic activity of nanoencapsulated quercetin in combating diethylnitrosamine-induced hepatocarcinoma in rats. Eur J Cancer Prev. 2012;21(1):32–41.

    CAS  PubMed  Google Scholar 

  46. Hassan HA, Ghareb NE, Azhari GF. Antioxidant activity and free radical-scavenging of cape gooseberry (Physalis peruviana L.) in hepatocellular carcinoma rats model. Hepatoma Res. 2017;3:27–33.

    CAS  Google Scholar 

  47. Roy SR, Gadad PC. Effect of β-asarone on diethylnitrosamine-induced hepatocellular carcinoma in rats. Indian J Health Sci Biomed Res. 2016;9(1):82.

    Google Scholar 

  48. Gelen V, Şengül E, Gedikli S, Atila G, Uslu H, Makav M. The protective effect of rutin and quercetin on 5-FU-induced hepatotoxicity in rats. Asian Pac J Trop Biomed. 2017;7(7):647–53.

    Google Scholar 

  49. Acquaviva R, Lanteri R, Li Destri G, Caltabiano R, Vanella L, Lanzafame S, et al. Beneficial effects of rutin and L-arginine coadministration in a rat model of liver ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 2009;296(3):G664–G70.

    CAS  PubMed  Google Scholar 

  50. Chen J-A, Shi M, Li J-Q, Qian C-N. Angiogenesis: multiple masks in hepatocellular carcinoma and liver regeneration. Hepatol Int. 2010;4(3):537–47.

    PubMed  PubMed Central  Google Scholar 

  51. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, et al. Synergistic effect of basic fibroblast growth factor and vascular endothelial growth factor in murine hepatocellular carcinoma. Hepatology. 2002;35(4):834–42.

    CAS  PubMed  Google Scholar 

  52. Ali MM, Borai IH, Ghanem HM, Abdel-Halim AH, Mousa FM. The prophylactic and therapeutic effects of Momordica charantia methanol extract through controlling different hallmarks of the hepatocarcinogenesis. Biomed Pharmacother. 2018;98:491–8.

    CAS  PubMed  Google Scholar 

  53. Schindler R, Mentlein R. Flavonoids and vitamin E reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells. J Nutr. 2006;136(6):1477–82.

    CAS  PubMed  Google Scholar 

  54. Sauzay C, Petit A, Bourgeois A-M, Barbare J-C, Chauffert B, Galmiche A, et al. Alpha-foetoprotein (AFP): a multi-purpose marker in hepatocellular carcinoma. Clin Chim Acta. 2016;463:39–44.

    CAS  PubMed  Google Scholar 

  55. Elewa MA, Al-Gayyar MM, Schaalan MF, El Galil KHA, Ebrahim MA, El-Shishtawy MM. Hepatoprotective and anti-tumor effects of targeting MMP-9 in hepatocellular carcinoma and its relation to vascular invasion markers. Clin Exp Metastasis. 2015;32(5):479–93.

    CAS  PubMed  Google Scholar 

  56. Chandra YP, Viswanathswamy A. Chemo preventive effect of rutin against N-nitrosodiethylamine-induced and phenobarbital-promoted hepatocellular carcinoma in Wistar rats. Indian J Pharm Educ Res. 2018;52(1):78–86.

    CAS  Google Scholar 

  57. Lv L, Zheng L, Dong D, Xu L, Yin L, Xu Y, et al. Dioscin, a natural steroid saponin, induces apoptosis and DNA damage through reactive oxygen species: a potential new drug for treatment of glioblastoma multiforme. Food Chem Toxicol. 2013;59:657–69.

    CAS  PubMed  Google Scholar 

  58. Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2(4):277.

    CAS  PubMed  Google Scholar 

  59. Hyman BT, Yuan J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci. 2012;13(6):395.

    CAS  PubMed  Google Scholar 

  60. Zhang X, Yu H. Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression. Iranian J Pharm Res. 2016;15(2):491.

    CAS  Google Scholar 

  61. Sherif MH, Abas A-SM, Abdrabouh DS. Anti-tumor activity of phloretin in treatment of hepatocellular induced carcinoma in rats. J Chem Pharm Res. 2017;9(7):82–92.

    CAS  Google Scholar 

  62. Liu Y, Fan C, Pu L, Wei C, Jin H, Teng Y, et al. Phloretin induces cell cycle arrest and apoptosis of human glioblastoma cells through the generation of reactive oxygen species. J Neuro-Oncol. 2016;128(2):217–23.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are very appreciative to Prof. Dr. Ahmed Osman (Pathology Department, Faculty of Veterinary Medicine, Cairo University, Egypt) for his assistance in examining histopathological aspects of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein E. Ali.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radwan, R.R., Ali, H.E. Radiation-synthesis of chitosan/poly (acrylic acid) nanogel for improving the antitumor potential of rutin in hepatocellular carcinoma. Drug Deliv. and Transl. Res. 11, 261–278 (2021). https://doi.org/10.1007/s13346-020-00792-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00792-7

Keywords

Navigation