Ferreira M, Rzhepishevska O, Grenho L, Malheiros D, Gonçalves L, Almeida AJ, et al. Levofloxacin-loaded bone cement delivery system: highly effective against intracellular bacteria and Staphylococcus aureus biofilms. Int J Pharm. 2017;532:241–8.
CAS
PubMed
Google Scholar
Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–61.
CAS
PubMed
PubMed Central
Google Scholar
Bejon P, Robinson E. Bone and joint infection. Medicine. 2017;45:711–4.
Google Scholar
Hibbitts A, O’Leary C. Emerging nanomedicine therapies to counter the rise of methicillin-resistant Staphylococcus aureus. Materials (Basel). 2018;11:321.
Google Scholar
Bui LMG, Conlon BP, Kidd SP. Antibiotic tolerance and the alternative lifestyles of Staphylococcus aureus. Essays Biochem. 2017;61:71–9.
PubMed
Google Scholar
Conlon BP. Staphylococcus aureus chronic and relapsing infections: evidence of a role for persister cells. BioEssays. 2014;36:991–6.
PubMed
Google Scholar
Grassi L, Maisetta G, Esin S, Batoni G. Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms. Front Microbiol. 2017;8:2409.
PubMed
PubMed Central
Google Scholar
Sahukhal GS, Pandey S, Elasri MO. msaABCR operon is involved in persister cell formation in Staphylococcus aureus. BMC Microbiol. 2017;17:218.
PubMed
PubMed Central
Google Scholar
Høiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T, Donelli G, et al. ESCMID∗ guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect. 2015;21:S1–25.
PubMed
Google Scholar
Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8:881–90.
PubMed
PubMed Central
Google Scholar
Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35:322–32.
PubMed
Google Scholar
Alexander EH, Hudson MC. Factors influencing the internalization of Staphylococcus aureus and impacts on the course of infections in humans. Appl Microbiol Biotechnol. 2001;56:361–6.
CAS
PubMed
Google Scholar
Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 2006;27:2331–9.
CAS
PubMed
Google Scholar
Marriott I. Osteoblast responses to bacterial pathogens: a previously unappreciated role for bone-forming cells in host defense and disease progression. Immunol Res. 2004;30:291–308.
CAS
PubMed
Google Scholar
Sinha B, Fraunholz M. Staphylococcus aureus host cell invasion and post-invasion events. Int J Med Microbiol. 2010;300:170–5.
PubMed
Google Scholar
Campoccia D, Montanaro L, Ravaioli S, Cangini I, Testoni F, Visai L, et al. New parameters to quantitatively express the invasiveness of bacterial strains from implant-related orthopaedic infections into osteoblast cells. Materials (Basel). 2018;11:E550.
Google Scholar
Ellington JK, Harris M, Hudson MC, Vishin S, Webb LX, Sherertz R. Intracellular Staphylococcus aureus and antibiotic resistance: implications for treatment of staphylococcal osteomyelitis. J Orthop Res. 2006;24:87–93.
PubMed
Google Scholar
Garzoni C, Kelley WL. Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol. 2009;17:59–65.
CAS
PubMed
Google Scholar
Scherr TD, Hanke ML, Huang O, James DBA, Horswill AR, Bayles KW, et al. Staphylococcus aureus biofilms induce macrophage dysfunction through leukocidin AB and alpha-toxin. MBio. 2015;6:25–7.
Google Scholar
Lima ALL, Oliveira PR, Carvalho VC, Cimerman S, Savio E. Recommendations for the treatment of osteomyelitis. Braz J Infect Dis. 2014;18:526–34.
PubMed
Google Scholar
Fraimow HS. Systemic antimicrobial therapy in osteomyelitis. Semin Plast Surg. 2009;23:90–9.
PubMed
PubMed Central
Google Scholar
Landersdorfer CB, Bulitta JB, Kinzig M, Holzgrabe U, Sörgel F. Penetration of antibacterials into bone pharmacokinetic, pharmacodynamic and bioanalytical considerations. Clin Pharmacokinet. 2009;48:89–124.
CAS
PubMed
Google Scholar
Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov. 2013;12:371–87.
CAS
PubMed
Google Scholar
Akimoto Y, Kaneko K, Tamura T. Amoxicillin concentrations in serum, jaw cyst, and jawbone following a single oral administration. J Oral Maxillofac Surg. 1982;40:287–93.
CAS
PubMed
Google Scholar
Spellberg B, Lipsky BA. Systemic antibiotic therapy for chronic osteomyelitis in adults. Clin Infect Dis. 2012;54:393–407.
PubMed
Google Scholar
Pea F. Penetration of antibacterials into bone. Clin Pharmacokinet. 2009;48:125–7.
CAS
PubMed
Google Scholar
Bystedt H, Dahlbäck A, Dornbusch K, Nord CE. Concentrations of azidocillin, erythromycin, doxycycline and clindamycin in human mandibular bone. Int J Oral Surg. 1978;7:442–9.
CAS
PubMed
Google Scholar
Martin C, Alaya M, Mallet MN, Viviand X, Ennabli K, Said R, et al. Penetration of vancomycin in cardiac and mediastinal tissues in humans. Pathol Biol. 1994;42:520–4.
CAS
PubMed
Google Scholar
Massias L, Dubois C, De Lentdecker P, Brodaty O, Fischler M, Farinotti R. Penetration of vancomycin in uninfected sternal bone. Antimicrob Agents Chemother. 1992;36:2539–41.
CAS
PubMed
PubMed Central
Google Scholar
Graziani AL, Lawson LA, Gibson GA, Steinberg MA, McGregor RR. Vancomycin concentrations in infected and noninfected human bone. Antimicrob Agents Chemother. 1988;32:1320–2.
CAS
PubMed
PubMed Central
Google Scholar
Rimmele T. Diffusion of levofloxacin into bone and synovial tissues. J Antimicrob Chemother. 2004;53:533–5.
CAS
PubMed
Google Scholar
Baum H, Böttcher S, Abel R, Gerner H, Sonntag H-G. Tissue and serum concentrations of levofloxacin in orthopaedic patients. Int J Antimicrob Agents. 2001;18:335–40.
Google Scholar
Traunmüller F, Schintler MV, Metzler J, Spendel S, Mauric O, Popovic M, et al. Soft tissue and bone penetration abilities of daptomycin in diabetic patients with bacterial foot infections. J Antimicrob Chemother. 2010;65:1252–7.
PubMed
Google Scholar
Gomes D, Pereira M, Bettencourt AF. Osteomyelitis: an overview of antimicrobial therapy. Braz J Pharm Sci. 2013;49:13–27.
CAS
Google Scholar
Cheng L, Renz N, Trampuz A. Management of periprosthetic joint infection. Kühn K-D, editor. Hip Pelvis Berlin. 2018;30:138–46.
Google Scholar
Stengel D, Bauwens K, Sehouli J. Ekkernkamp a, Porzsolt F. Systematic review and meta-analysis of antibiotic therapy for bone and joint infections. Lancet Infect Dis. 2001;1:175–88.
CAS
PubMed
Google Scholar
Zimmerli W, Sendi P. Orthopaedic biofilm infections. APMIS. 2017;125:353–64.
PubMed
Google Scholar
Cheng H, Chawla A, Yang Y, Li Y, Zhang J, Jang HL, et al. Development of nanomaterials for bone-targeted drug delivery. Drug Discov Today. 2017;22:1336–50.
CAS
PubMed
PubMed Central
Google Scholar
Xiong MH, Bao Y, Yang XZ, Zhu YH, Wang J. Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev. 2014;78:63–76.
CAS
PubMed
Google Scholar
Nandi SK, Mukherjee P, Roy S, Kundu B, De DK, Basu D. Local antibiotic delivery systems for the treatment of osteomyelitis – a review. Mater Sci Eng C. 2009;29:2478–85.
CAS
Google Scholar
Forier K, Raemdonck K, De Smedt SC, Demeester J, Coenye T, Braeckmans K. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J Control Release. 2014;190:607–23.
CAS
PubMed
Google Scholar
Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012;8:147–66.
CAS
PubMed
Google Scholar
Dos Santos Ramos MA, Da Silva P, Spósito L, De Toledo L, Bonifácio B, Rodero CF, et al. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int J Nanomedicine. 2018;13:1179–213.
PubMed
PubMed Central
Google Scholar
Rukavina Z, Vanić Ž. Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics. 2016;8:E18.
PubMed
Google Scholar
Lewis G. Not all approved antibiotic-loaded PMMA bone cement brands are the same: ranking using the utility materials selection concept. J Mater Sci Mater Med. 2015;26:5388.
PubMed
Google Scholar
Bistolfi A, Massazza G, Verné E, Massè A, Deledda D, Ferraris S, et al. Antibiotic-loaded cement in orthopedic surgery: a review. ISRN Orthop. 2011;2011:1–8.
Google Scholar
Jiranek WA, Hanssen AD, Greenwald AS. Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. J Bone Jt Surg. 2006;88:2487–500.
Google Scholar
Soares D, Leite P, Barreira P, Aido R, Sousa R. Antibiotic-loaded bone cement in total joint arthroplasty. Acta Orthop Belg. 2015;81:184–90.
PubMed
Google Scholar
Van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ. Infection of orthopedic implants and the use of antibiotic-loaded bone cements A review. Acta Orthop Scand. 2001;72:557–71.
PubMed
Google Scholar
Athans V, Veve MP, Davis SL. Trowels and tribulations: review of antimicrobial-impregnated bone cements in prosthetic joint surgery. Pharmacotherapy. 2017;37:1565–77.
PubMed
Google Scholar
Vaishya R, Chauhan M, Vaish A. Bone cement. J Clin Orthop Trauma. 2013;4:157–63.
PubMed
PubMed Central
Google Scholar
Saleh KJ, El Othmani MM, Tzeng TH, Mihalko WM, Chambers MC, Grupp TM. Acrylic bone cement in total joint arthroplasty: a review. J Orthop Res. 2016;34:737–44.
CAS
Google Scholar
Snoddy B, Jayasuriya AC. The use of nanomaterials to treat bone infections. Mater Sci Eng C. 2016;67:822–33.
CAS
Google Scholar
Arora M, Chan EK, Gupta S, Diwan AD. Polymethylmethacrylate bone cements and additives: a review of the literature. World J Orthop. 2013;4:67–74.
PubMed
PubMed Central
Google Scholar
Matos AC, Ribeiro IAC, Guedes RC, Pinto R, Vaz MA, Goncalves LM, et al. Key-properties outlook of a levofloxacin-loaded acrylic bone cement with improved antibiotic delivery. Int J Pharm. 2015;485:317–28.
CAS
PubMed
Google Scholar
Shi Z, Neoh KGG, Kang ETT, Wang W. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials. 2006;27:2440–9.
CAS
PubMed
Google Scholar
Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, et al. Nanoparticulate silver. A new antimicrobial substance for bone cement. Orthopade. 2004;33:885–92.
CAS
PubMed
Google Scholar
Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials. 2004;25:4383–91.
CAS
PubMed
Google Scholar
Asli A, Brouillette E, Ster C, Ghinet MG, Brzezinski R, Lacasse P, et al. Antibiofilm and antibacterial effects of specific chitosan molecules on Staphylococcus aureus isolates associated with bovine mastitis. PLoS One. 2017;12:e0176988.
PubMed
PubMed Central
Google Scholar
Li W-R, Xie X-B, Shi Q-S, Duan S-S, Ouyang Y-S, Chen Y-B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. BioMetals. 2011;24:135–41.
CAS
PubMed
Google Scholar
Zhang W, Lei G, Liu Y, Wang W, Song T, Fan J. Approach to osteomyelitis treatment with antibiotic loaded PMMA. Microb Pathog. 2017;102:42–4.
CAS
Google Scholar
Nandi SK, Bandyopadhyay S, Das P, Samanta I, Mukherjee P, Roy S, et al. Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol Adv. 2016;34:1305–17.
CAS
PubMed
Google Scholar
Bastari K, Arshath M, Ng ZHM, Chia JH, ZXD Y, Sana B, et al. A controlled release of antibiotics from calcium phosphate-coated poly(lactic-co-glycolic acid) particles and their in vitro efficacy against Staphylococcus aureus biofilm. J Mater Sci Mater Med. 2014;25:747–57.
CAS
PubMed
Google Scholar
Ignjatović NL, Ninkov P, Sabetrasekh R, Uskoković DP. A novel nano drug delivery system based on tigecycline-loaded calciumphosphate coated with poly-dl-lactide-co-glycolide. J Mater Sci Mater Med. 2010;21:231–9.
PubMed
Google Scholar
Mifsud M, McNally M. Local delivery of antimicrobials in the treatment of bone infections. Orthop Traumatol. 2019;33:160–5.
Google Scholar
Szurkowska K, Laskus A, Kolmas J. Hydroxyapatite-based materials for potential use in bone tissue infections. In: Thirumalai J, editor. InTech; 2018 pp. 109–35.
Kaya M, Şimşek-Kaya G, Gürsan N, Kireççi E, Dayı E, Gündoğdu B. Local treatment of chronic osteomyelitis with surgical debridement and tigecycline-impregnated calcium hydroxyapatite: an experimental study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113:340–7.
PubMed
Google Scholar
Zhou Q, Wang T, Wang C, Wang Z, Yang Y, Li P, et al. Synthesis and characterization of silver nanoparticles-doped hydroxyapatite/alginate microparticles with promising cytocompatibility and antibacterial properties. Colloids Surfaces A Physicochem Eng Asp. 2020;585:124081.
CAS
Google Scholar
Zhang LG, Im O, Li J, Keidar M. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration. Int J Nanomedicine. 2012;7:2087.
PubMed
PubMed Central
Google Scholar
Peng K-T, Chen C-F, Chu I-M, Li Y-M, Hsu W-H, Hsu RW-W, et al. Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials. 2010;31:5227–36.
CAS
PubMed
Google Scholar
Moghadas-Sharif N, Fazly Bazzaz BS, Khameneh B, Malaekeh-Nikouei B. The effect of nanoliposomal formulations on Staphylococcus epidermidis biofilm. Drug Dev Ind Pharm. 2015;41:445–50.
CAS
PubMed
Google Scholar
Schiffelers RM, Storm G, Bakker-Woudenberg IA. Host factors influencing the preferential localization of sterically stabilized liposomes in Klebsiella pneumoniae-infected rat lung tissue. Pharm Res. 2001;18:780–7.
CAS
PubMed
Google Scholar
Gaspar M, Cruz A, Fraga A, Castro A, Cruz M, Pedrosa J. Developments on drug delivery systems for the treatment of mycobacterial infections. Curr Top Med Chem. 2008;8:579–91.
CAS
PubMed
Google Scholar
Gaspar MM, Calado S, Pereira J, Ferronha H, Correia I, Castro H, et al. Targeted delivery of paromomycin in murine infectious diseases through association to nano lipid systems. Nanomedicine. 2015;11:1851–60.
CAS
PubMed
Google Scholar
Gaspar MM, Radomska A, Gobbo OL, Bakowsky U, Radomski MW, Ehrhardt C. Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats. J Aerosol Med Pulm Drug Deliv. 2012;25:310–8.
CAS
PubMed
Google Scholar
Cruz M, Simões S, Crow M, Martins M, Gaspar M. Formulation of nanoparticulate drug delivery systems (NPDDS) for macromolecules. In: Pathak Y, Thassu D, editors. Informa Healthcare USA I. New York: Drug Deliv nanoparticles Formul Charact; 2009. p. 35–49.
Google Scholar
Xing H, Hwang K, Lu Y. Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics. 2016;6:1336–52.
CAS
PubMed
PubMed Central
Google Scholar
Rivero Berti I, Dell’Arciprete ML, Dittler ML, Miñan A, Fernández Lorenzo de Mele M, Gonzalez M. Delivery of fluorophores by calcium phosphate-coated nanoliposomes and interaction with Staphylococcus aureus biofilms. Colloids Surf B: Biointerfaces. 2016;142:214–22.
CAS
PubMed
Google Scholar
Vyas SP, Sihorkar V, Jain S. Mannosylated liposomes for bio-film targeting. Int J Pharm. 2007;330:6–13.
CAS
PubMed
Google Scholar
Dogbe MG, Mafilaza AY, Eleutério CV, Cabral-Marques H, Simões S, Gaspar MM. Pharmaceutical benefits of fluticasone propionate association to delivery systems: In vitro and in vivo evaluation. Pharmaceutics. 2019;11:E521.
PubMed
Google Scholar
Ranjan A, Pothayee N, Seleem MN, Tyler RD, Brenseke B, Sriranganathan N, et al. Antibacterial efficacy of core-shell nanostructures encapsulating gentamicin against an in vivo intracellular Salmonella model. Int J Nanomedicine. 2009;4:289–97.
CAS
PubMed
PubMed Central
Google Scholar
Ranjan A, Pothayee N, Vadala TP, Seleem MN, Restis E, Sriranganathan N, et al. Efficacy of amphiphilic core-shell nanostructures encapsulating gentamicin in an in vitro Salmonella and Listeria intracellular infection model. Antimicrob Agents Chemother. 2010;54:3524–6.
CAS
PubMed
PubMed Central
Google Scholar
Pinheiro M, Magalhães J, Reis S. Antibiotic interactions using liposomes as model lipid membranes. Chem Phys Lipids. 2019;222:36–46.
CAS
PubMed
Google Scholar
Kadry AA, Al-Suwayeh SA, Abd-Allah ARA, Bayomi MA. Treatment of experimental osteomyelitis by liposomal antibiotics. J Antimicrob Chemother. 2004;54:1103–8.
CAS
PubMed
Google Scholar
Dong D, Thomas N, Thierry B, Vreugde S, Prestidge CA, Wormald P-J. Distribution and inhibition of liposomes on Staphylococcus aureus and Pseudomonas aeruginosa biofilm. PLoS One. 2015;10:e0131806.
PubMed
PubMed Central
Google Scholar
Forier K, Messiaen A-S, Raemdonck K, Nelis H, De Smedt S, Demeester J, et al. Probing the size limit for nanomedicine penetration into Burkholderia multivorans and Pseudomonas aeruginosa biofilms. J Control Release. 2014;195:21–8.
CAS
PubMed
Google Scholar
Onyeji CO, Nightingale CH, Marangos MN. Enhanced killing of methicillin-resistant Staphylococcus aureus in human macrophages by liposome-entrapped vancomycin and teicoplanin. Infection. 1994;22:338–42.
CAS
PubMed
Google Scholar
Sande L, Sanchez M, Montes J, Wolf AJ, Morgan MA, Omri A, et al. Liposomal encapsulation of vancomycin improves killing of methicillin-resistant Staphylococcus aureus in a murine infection model. J Antimicrob Chemother. 2012;67:2191–4.
CAS
PubMed
Google Scholar
Liu J, Wang Z, Li F, Gao J, Wang L, Huang G. Liposomes for systematic delivery of vancomycin hydrochloride to decrease nephrotoxicity: Characterization and evaluation. Asian J Pharm Sci. 2015;10:212–22.
Google Scholar
Yang Z, Liu J, Gao J, Chen S, Huang G. Chitosan coated vancomycin hydrochloride liposomes: characterizations and evaluation. Int J Pharm. 2015;495:508–15.
CAS
PubMed
Google Scholar
Alshamsan A, Aleanizy FS, Badran M, Alqahtani FY, Alfassam H, Almalik A, et al. Exploring anti-MRSA activity of chitosan-coated liposomal dicloxacillin. J Microbiol Methods. 2019;156:23–8.
CAS
PubMed
Google Scholar
Zhu C-T, Xu Y-Q, Shi J, Li J, Ding J. Liposome combined porous β-TCP scaffold: preparation, characterization, and anti-biofilm activity. Drug Deliv. 2010;17:391–8.
CAS
PubMed
Google Scholar
Zhou T-H, Su M, Shang B-C, Ma T, Xu G-L, Li H-L, et al. Nano-hydroxyapatite/β-tricalcium phosphate ceramics scaffolds loaded with cationic liposomal ceftazidime: preparation, release characteristics in vitro and inhibition to Staphylococcus aureus biofilms. Drug Dev Ind Pharm. 2012;38:1298–304.
CAS
PubMed
Google Scholar
Ma T, Shang B-C, Tang H, Zhou T-H, Xu G-L, Li H-L, et al. Nano-hydroxyapatite/chitosan/konjac glucomannan scaffolds loaded with cationic liposomal vancomycin: preparation, in vitro release and activity against Staphylococcus aureus biofilms. J Biomater Sci Polym Ed. 2011;22:1669–81.
CAS
PubMed
Google Scholar
Hui T, Yongqing X, Tiane Z, Gang L, Yonggang Y, Muyao J, et al. Treatment of osteomyelitis by liposomal gentamicin-impregnated calcium sulfate. Arch Orthop Trauma Surg. 2009;129:1301–8.
PubMed
Google Scholar
Ayre WN, Birchall JC, Evans SL, Denyer SP. A novel liposomal drug delivery system for PMMA bone cements. J Biomed Mater Res Part B Appl Biomater. 2016;104:1510–24.
CAS
Google Scholar
Liu X-M, Zhang Y, Chen F, Khutsishvili I, Fehringer EV, Marky LA, et al. Prevention of orthopedic device-associated osteomyelitis using oxacillin-containing biomineral-binding liposomes. Pharm Res. 2012;29:3169–79.
CAS
PubMed
PubMed Central
Google Scholar
Laye C, McClements DJ, Weiss J. Formation of biopolymer-coated liposomes by electrostatic deposition of chitosan. J Food Sci. 2008;73:N7–15.
CAS
PubMed
Google Scholar
Stapleton M, Sawamoto K, Alméciga-Díaz CJ, Mackenzie WG, Mason RW, Orii T, et al. Development of bone targeting drugs. Int J Mol Sci. 2017;18:E1345.
PubMed
Google Scholar
Hengst V, Oussoren C, Kissel T, Storm G. Bone targeting potential of bisphosphonate-targeted liposomes. Preparation, characterization and hydroxyapatite binding in vitro. Int J Pharm. 2007;331:224–7.
CAS
PubMed
Google Scholar
Gaspar MM, Boerman OC, Laverman P, Corvo ML, Storm G, Cruz MEM. Enzymosomes with surface-exposed superoxide dismutase: in vivo behaviour and therapeutic activity in a model of adjuvant arthritis. J Control Release Netherlands. 2007;117:186–95.
CAS
Google Scholar
Fielding RM. Liposomal Drug Delivery. Clin Pharmacokinet. 1991;21:155–64.
CAS
PubMed
Google Scholar
He H, Yuan D, Wu Y, Cao Y. Pharmacokinetics and pharmacodynamics modeling and simulation systems to support the development and regulation of liposomal drugs. Pharmaceutics. 2019;11:110.
CAS
PubMed Central
Google Scholar
Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1:297–315.
CAS
PubMed
PubMed Central
Google Scholar
Jøraholmen MW, Bhargava A, Julin K, Johannessen M, Škalko-Basnet N. The antimicrobial properties of chitosan can be tailored by formulation. Mar Drugs. 2020;18:1–15.
Google Scholar
Mady MM, Darwish MM. Effect of chitosan coating on the characteristics of DPPC liposomes. J Adv Res. 2010;1:187–91.
Google Scholar
Nishino Y, Takemura S, Minamiyama Y, Hirohashi K, Tanaka H, Inoue M, et al. Inhibition of vancomycin-induced nephrotoxicity by targeting superoxide dismutase to renal proximal tubule cells in the rat. Redox Rep. 2002;7:317–9.
CAS
PubMed
Google Scholar
Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis. 2006;42:S35–9 A.
CAS
PubMed
Google Scholar
Gaspar MM, Cruz A, Penha AF, Reymão J, Sousa AC, Eleutério CV, et al. Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis. Int J Antimicrob Agents. 2008;31:37–45.
CAS
PubMed
Google Scholar
Darley ESR, MacGowan AP. Antibiotic treatment of Gram-positive bone and joint infections. J Antimicrob Chemother. 2004;53:928–35.
CAS
PubMed
Google Scholar
Humphrey SJ, Mehta S, Seaber AV, Vail TP. Pharmacokinetics of a degradable drug delivery system in bone. Clin Orthop Relat Res. 1998;349:218–24.
Google Scholar
Zylberberg C, Matosevic S. Bioengineered liposome–scaffold composites as therapeutic delivery systems. Ther Deliv. 2017;8:425–45.
CAS
PubMed
Google Scholar
Kendoff DO, Gehrke T, Stangenberg P, Frommelt L, Bösebeck H. Bioavailability of gentamicin and vancomycin released from an antibiotic containing bone cement in patients undergoing a septic one-stage total hip arthroplasty (THA) revision: a monocentric open clinical trial. HIP Int. 2016;26:90–6.
PubMed
Google Scholar
Luo S, Jiang T, Yang Y, Yang X, Zhao J. Combination therapy with vancomycin-loaded calcium sulfate and vancomycin-loaded PMMA in the treatment of chronic osteomyelitis. BMC Musculoskelet Disord. 2016;17:502.
PubMed
PubMed Central
Google Scholar
Jiang N, Zhao X, Wang L, Lin Q, Hu Y, Yu B. Single-stage debridement with implantation of antibiotic-loaded calcium sulphate in 34 cases of localized calcaneal osteomyelitis. Acta Orthop. 2020;3674:1–7.
Google Scholar