Skip to main content

Advertisement

Log in

Recent technological advancements in stem cell research for targeted therapeutics

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Stem cells have characteristic features of self-renewal, pluripotency and differentiation, which are responsible for replenishment of tissue or organ. Stem cells are potentiated as therapeutic tool in drug targeting and regenerative medicine—from curing various neurological diseases and malignancies to congenital diseases. These technological advancements have established stem cells as future of medicine. However, due to ethico-social limitations, the use of embryonic stem cells (ESCs) has been avoided, while physiological availability of adult stem cells (ASCs) and induced pluripotent stem cells (iPSCs) has gained appropriate preference. These iPSCs are very much similar to ESCs in terms of their self-renewal and pluripotency. Here, we have summarized the technologies that have established stem cells isolation, their molecular marker and factors responsible for their maintenance. Different cellular (transcription factors, regulatory proteins, miRNA like miRNA-296, miRNA-145, etc.) and extracellular components transcend stem cell fate. Their identification and characterization involve development and efficient utilization of tools like magnetic activated cell sorting (MACS) and fluorescence activated cell sorting (FACS). Some of the technologies have been patented and spin-off’s based on them have been commercialized. In conclusion, we present the future scope and possibilities that stem cell technologies behold for us.

Pictorial representation of therapeutic approaches for disease treatment using stem cell technology. Disease-specific adult stem cells are isolated along with niche cells by utilizing tools like FACS/MACS/LCM, etc. Thereafter, cells are reprogrammed through introduction of Yamanaka factors (Oct3/4, Sox2, c-myc, Klf4) to make induced pluripotent stem cell (iPSCs). The disease-specific iPSCs undergo genetic modification after delivery of therapeutic gene through retroviral vehicle. The genetically modified cells are introduced back in person with disease for therapeutic effects. FACS, fluorescence activated cell sorting; MACS, magnetic-activated cell sorting; LCM, laser capture microdissection; Oct3/4, octamer-binding transcription factor 3/4; Sox2, sex determining region Y-box 2; Klf4, Kruppel-like factor 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell. 1997;88(3):287–98.

    CAS  PubMed  Google Scholar 

  2. Till JE, McCulloch EA. Hemopoietic stem cell differentiation. Biochim Biophys Acta. 1980;605(4):431–59.

    CAS  PubMed  Google Scholar 

  3. de Carvalho AC. Stem cells and degenerative diseases. BMC Proc. 2014;8(Suppl 4):O19.

    PubMed Central  Google Scholar 

  4. Sugaya K, Vaidya M. Stem cell therapies for neurodegenerative diseases. Adv Exp Med Biol. 2018;1056:61–84.

    CAS  PubMed  Google Scholar 

  5. Biehl JK, Russell B. Introduction to stem cell therapy. J Cardiovasc Nurs. 2009;24(2):98–105.

    PubMed  PubMed Central  Google Scholar 

  6. Bongso A, Fong C-Y, Ng S-C, Ratnam S. Fertilization and early embryology: isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod. 1994;9(11):2110–7.

    CAS  PubMed  Google Scholar 

  7. McElroy SL, Pera RAR. Culturing human embryonic stem cells in feeder-free conditions. Cold Spring Harb Protoc. 2008;2008(9) pdb. prot5044.

  8. Armstrong L, Saretzki G, Peters H, Wappler I, Evans J, Hole N, et al. Overexpression of telomerase confers growth advantage, stress resistance, and enhanced differentiation of ESCs toward the hematopoietic lineage. Stem Cells. 2005;23(4):516–29.

    CAS  PubMed  Google Scholar 

  9. Desai A, Yan Y, Gerson SL. Concise reviews: cancer stem cell targeted therapies: toward clinical success. Stem Cells Transl Med. 2019;8(1):75–81.

    PubMed  Google Scholar 

  10. Ben-Nun IF, Montague SC, Houck ML, Tran HT, Garitaonandia I, Leonardo TR, et al. Induced pluripotent stem cells from highly endangered species. Nat Methods. 2011;8:829–31.

    PubMed  Google Scholar 

  11. Valenti MT, Serena M, Carbonare LD, Zipeto D. CRISPR/Cas system: an emerging technology in stem cell research. World J Stem Cells. 2019;11(11):937–56.

    PubMed  PubMed Central  Google Scholar 

  12. Edwards R. IVF and the history of stem cells. Nature. 2001;413(6854):349–51.

    CAS  PubMed  Google Scholar 

  13. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.

    CAS  PubMed  Google Scholar 

  14. Health NIo. Stem cell basics [Stem cell information]. stemcells.nih.gov/info/basics/1.htm. 2016.

  15. Alvarez CV, Garcia-Lavandeira M, Garcia-Rendueles MER, Diaz-Rodriguez E, Garcia-Rendueles AR, Perez-Romero S, et al. Defining stem cell types: understanding the therapeutic potential of ESCs, ASCs, and iPS cells. J Mol Endocrinol. 2012;49(2):R89–R111.

    CAS  PubMed  Google Scholar 

  16. Mountford J. Human embryonic stem cells: origins, characteristics and potential for regenerative therapy. Transfus Med. 2008;18(1):1–12.

    CAS  PubMed  Google Scholar 

  17. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    CAS  PubMed  Google Scholar 

  18. Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol. 2007;25:803.

    CAS  PubMed  Google Scholar 

  19. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95(3):379–91.

    CAS  PubMed  Google Scholar 

  20. Loh Y-H, Wu Q, Chew J-L, Vega VB, Zhang W, Chen X, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38(4):431–40.

    CAS  PubMed  Google Scholar 

  21. Wang Z-X, Teh CH-L, Kueh JL, Lufkin T, Robson P, Stanton LW. Oct4 and Sox2 directly regulate expression of another pluripotency transcription factor, Zfp206, in embryonic stem cells. J Biol Chem. 2007;282(17):12822–30.

    CAS  PubMed  Google Scholar 

  22. Petryniak B, Staudt LM, Postema CE, McCormack WT, Thompson CB. Characterization of chicken octamer-binding proteins demonstrates that POU domain-containing homeobox transcription factors have been highly conserved during vertebrate evolution. Proc Natl Acad Sci. 1990;87(3):1099–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol. 2007;9:625–35.

    CAS  PubMed  Google Scholar 

  24. Kopp JL, Ormsbee BD, Desler M, Rizzino A. Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells. 2008;26(4):903–11.

    CAS  PubMed  Google Scholar 

  25. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113(5):643–55.

    CAS  PubMed  Google Scholar 

  26. Rodda DJ, Chew J-L, Lim L-H, Loh Y-H, Wang B, Ng H-H, et al. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem. 2005;280(26):24731–7.

    CAS  PubMed  Google Scholar 

  27. Lim LS, Hong FH, Kunarso G, Stanton LW. The pluripotency regulator Zic3 is a direct activator of the Nanog promoter in ESCs. Stem Cells. 2010;28(11):1961–9.

    CAS  PubMed  Google Scholar 

  28. Corti S, Nizzardo M, Nardini M, Donadoni C, Locatelli F, Papadimitriou D, et al. Isolation and characterization of murine neural stem/progenitor cells based on Prominin-1 expression. Exp Neurol. 2007;205(2):547–62.

    CAS  PubMed  Google Scholar 

  29. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1–2):7–25.

    CAS  PubMed  Google Scholar 

  30. Boisset J-C, Robin C. On the origin of hematopoietic stem cells: progress and controversy. Stem Cell Res. 2012;8(1):1–13.

    CAS  PubMed  Google Scholar 

  31. Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961;14(2):213–22.

    CAS  PubMed  Google Scholar 

  32. Morgan RA, Gray D, Lomova A, Kohn DB. Hematopoietic stem cell gene therapy: progress and lessons learned. Cell Stem Cell. 2017;21(5):574–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132(4):631–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241(4861):58–62.

    CAS  PubMed  Google Scholar 

  35. Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol. 2013;15(5):533–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Arinobu Y, Mizuno S, Chong Y, Shigematsu H, Iino T, Iwasaki H, et al. Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell. 2007;1(4):416–27.

    CAS  PubMed  Google Scholar 

  38. Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 1997;91(5):661–72.

    CAS  PubMed  Google Scholar 

  39. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404(6774):193–7.

    CAS  PubMed  Google Scholar 

  40. Kiel MJ, Morrison SJ. Maintaining hematopoietic stem cells in the vascular niche. Immunity. 2006;25(6):862–4.

    CAS  PubMed  Google Scholar 

  41. Altman J. Are new neurons formed in the brains of adult mammals? Science. 1962;135(3509):1127–8.

    CAS  PubMed  Google Scholar 

  42. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124(3):319–35.

    CAS  PubMed  Google Scholar 

  43. Altman J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol. 1969;137(4):433–57.

    CAS  PubMed  Google Scholar 

  44. Bond AM, Ming G-l, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell. 2015;17(4):385–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sanai N, Tramontin AD, Quiñones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427(6976):740–4.

    CAS  PubMed  Google Scholar 

  46. Garba A, Desmarets LM, Acar DD, Devriendt B, Nauwynck HJ. Immortalized porcine mesenchymal cells derived from nasal mucosa, lungs, lymph nodes, spleen and bone marrow retain their stemness properties and trigger the expression of siglec-1 in co-cultured blood monocytic cells. PLoS ONE. 2017;12(10):e0186343.

    PubMed  PubMed Central  Google Scholar 

  47. Dieguez-Acuña F, Kodama S, Okubo Y, Paz AC, Gygi SP, Faustman DL. Proteomics identifies multipotent and low oncogenic risk stem cells of the spleen. Int J Biochem Cell Biol. 2010;42(10):1651–60.

    PubMed  Google Scholar 

  48. Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell. 1990;60(4):585–95.

    CAS  PubMed  Google Scholar 

  49. D'Amour KA, Gage FH. Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells. Proc Natl Acad Sci. 2003;100(suppl 1):11866–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Barraud P, Thompson L, Kirik D, Björklund A, Parmar M. Isolation and characterization of neural precursor cells from the Sox1–GFP reporter mouse. Eur J Neurosci. 2005;22(7):1555–69.

    PubMed  Google Scholar 

  51. Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med. 2018;7(1):18.

    PubMed  PubMed Central  Google Scholar 

  52. Mao X-G, Zhang X, Xue X-Y, Guo G, Wang P, Zhang W, et al. Brain tumor stem-like cells identified by neural stem cell marker CD15. Transl Oncol. 2009;2(4):247–57.

    PubMed  PubMed Central  Google Scholar 

  53. Qin S, Huang X, Wang D, Hu X, Yuan Y, Sun X, et al. Identification of characteristic genes distinguishing neural stem cells from astrocytes. Gene. 2019;681:26–35.

    CAS  PubMed  Google Scholar 

  54. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966 Dec;16(3):381-90.

  55. Secunda R, Vennila R, Mohanashankar AM, Rajasundari M, Jeswanth S, Surendran R. Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology. 2015;67(5):793–807.

    CAS  PubMed  Google Scholar 

  56. Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, et al. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells. 2009;25(2):319–31.

    Google Scholar 

  57. Nombela-Arrieta C, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol. 2011;12:126–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med. 2001;226(6):507–20.

    CAS  Google Scholar 

  59. Lin W, Huang L, Li Y, Fang B, Li G, Chen L, et al. Mesenchymal stem cells and cancer: clinical challenges and opportunities. Biomed Res Int. 2019;2019:12.

    Google Scholar 

  60. Lee WYW, Zhang T, Lau CPY, Wang CC, Chan K-M, Li G. Immortalized human fetal bone marrow-derived mesenchymal stromal cell expressing suicide gene for anti-tumor therapy in vitro and in vivo. Cytotherapy. 2013;15(12):1484–97.

    CAS  PubMed  Google Scholar 

  61. Song C, Xiang J, Tang J, Hirst DG, Zhou J, Chan K-M, et al. Thymidine kinase gene modified bone marrow mesenchymal stem cells as vehicles for antitumor therapy. Hum Gene Ther. 2011;22(4):439–49.

    CAS  PubMed  Google Scholar 

  62. Gjorgieva D, Zaidman N, Bosnakovski D. Mesenchymal stem cells for anti-cancer drug delivery. Recent Pat Anti-Canc Drug Discov. 2013;8(3):1–9.

    Google Scholar 

  63. Chen J, Ji T, Wu D, Jiang S, Zhao J, Cai X, et al. Human mesenchymal stem cells promote tumor growth via MAPK pathway and metastasis by epithelial mesenchymal transition and integrin α5 in hepatocellular carcinoma. Cell Death Dis. 2019;10(6):425.

    PubMed  PubMed Central  Google Scholar 

  64. Keller G. The hemangioblast. In: Marshak DR, Gardner DK, Gottlieb D, editors. Cold Spring Harbor. New York: Cold Spring Harbor Laboratory Press; 2001. p. 329–48.

    Google Scholar 

  65. Poole TJ, Finkelstein EB, Cox CM. The role of FGF and VEGF in angioblast induction and migration during vascular development. Dev Dyn. 2001;220(1):1–17.

    CAS  PubMed  Google Scholar 

  66. Chinzei R, Tanaka Y, Shimizu-Saito K, Hara Y, Kakinuma S, Watanabe M, et al. Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology. 2002;36(1):22–9.

    PubMed  Google Scholar 

  67. Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol. 2015;5(3):1027‐1059.

  68. Abbaspanah B, Momeni M, Ebrahimi M, Mousavi SH. Advances in perinatal stem cells research: a precious cell source for clinical applications. Regen Med. 2018;13(5):595–610.

    CAS  PubMed  Google Scholar 

  69. Houlihan JM, Biro PA, Harper HM, Jenkinson HJ, Holmes CH. The human amnion is a site of MHC class Ib expression: evidence for the expression of HLA-E and HLA-G. J Immunol. 1995;154(11):5665–74.

    CAS  PubMed  Google Scholar 

  70. Taylor A, Verhagen J, Blaser K, Akdis M, Akdis CA. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-β: the role of T regulatory cells. Immunology. 2006;117(4):433–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Verma V, Tabassum N, Yadav C, Kumar M, Singh A, Singh M. Cord blood banking: an Indian perspective. Cell Mol Biol. 2016;62:1–5.

    Google Scholar 

  72. Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood. 2013;122(4):491–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    CAS  PubMed  Google Scholar 

  74. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4(5):381–4.

    CAS  PubMed  Google Scholar 

  75. Plews JR, Li J, Jones M, Moore HD, Mason C, Andrews PW, et al. Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach. PLoS ONE. 2010;5(12):e14397.

    PubMed  PubMed Central  Google Scholar 

  76. Anokye-Danso F, Trivedi C, Juhr D, Gupta M, Cui Z, Tian Y, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell. 2011;8(4):376–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu Y, Shi Y, Ding S. A chemical approach to stem-cell biology and regenerative medicine. Nature. 2008;453(7193):338–44.

    CAS  PubMed  Google Scholar 

  78. David L, Polo JM. Phases of reprogramming. Stem Cell Res. 2014;12(3):754–61.

    PubMed  Google Scholar 

  79. Soufi A, Donahue G, Zaret KS. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell. 2012;151(5):994–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Polo JM, Anderssen E, Walsh RM, Schwarz BA, Nefzger CM, Lim SM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell. 2016;151(7):1617–32.

    Google Scholar 

  81. O’Malley J, Skylaki S, Iwabuchi KA, Chantzoura E, Ruetz T, Johnsson A, et al. High-resolution analysis with novel cell-surface markers identifies routes to iPS cells. Nature. 2013;499(7456):88–91.

    PubMed  PubMed Central  Google Scholar 

  82. Brambrink T, Foreman R, Welstead GG, Lengner CJ, Wernig M, Suh H, et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell. 2008;2(2):151–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Samavarchi-Tehrani P, Golipour A, David L, Sung H-K, Beyer TA, Datti A, et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell. 2010;7:64–77.

    CAS  PubMed  Google Scholar 

  84. Golipour A, David L, Liu Y, Jayakumaran G, Hirsch Calley L, Trcka D, et al. A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Cell Stem Cell. 2012;11(6):769–82.

    CAS  PubMed  Google Scholar 

  85. Zuba-Surma EK, Wojakowski W, Ratajczak MZ, Dawn B. Very small embryonic-like stem cells: biology and therapeutic potential for heart repair. Antioxid Redox Signal. 2011;15(7):1821–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, Ratajczak J, Kucia M. Very small embryonic-like stem cells: characterization, developmental origin, and biological significance. Exp Hematol. 2008;36(6):742–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ratajczak MZ, Zuba-Surma EK, Shin D-M, Ratajczak J, Kucia M. Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Exp Gerontol. 2008;43(11):1009–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bhartiya D. Shifting gears from embryonic to very small embryonic-like stem cells for regenerative medicine. Indian J Med Res. 2017;146(1):15–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ratajczak MZ, Zuba-Surma E, Wojakowski W, Suszynska M, Mierzejewska K, Liu R, et al. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate. Leukemia. 2014;28(3):473–84.

    CAS  PubMed  Google Scholar 

  90. Ratajczak MZ, Ratajczak J, Suszynska M, Miller DM, Kucia M, Shin D-M. A novel view of the adult stem cell compartment from the perspective of a quiescent population of very small embryonic-like stem cells. Circ Res. 2017;120(1):166–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang S, Zhao L, Wang J, Chen N, Yan J, Pan X. HIF-2α and Oct4 have synergistic effects on survival and myocardial repair of very small embryonic-like mesenchymal stem cells in infarcted hearts. Cell Death Dis. 2018;8(1):e2548-e.

    Google Scholar 

  92. Mohammad SA, Metkari S, Bhartiya DA. Mouse pancreas stem/progenitor cells get augmented by streptozotocin and regenerate diabetic pancreas after partial pancreatectomy. Stem Cell Rev Rep. 2020;16(1):144–58.

    PubMed  Google Scholar 

  93. Bhartiya D, James K. Very small embryonic-like stem cells (VSELs) in adult mouse uterine perimetrium and myometrium. J Ovarian Res. 2017;10(1):29.

    PubMed  PubMed Central  Google Scholar 

  94. Bhartiya D. Stem cells survive oncotherapy & can regenerate non-functional gonads: a paradigm shift for oncofertility. Indian J Med Res. 2018;148(7):38–49.

    Google Scholar 

  95. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105.

    CAS  PubMed  Google Scholar 

  96. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.

    CAS  PubMed  Google Scholar 

  97. Borst P. Cancer drug pan-resistance: pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biol. 2012;2(5):120066.

    PubMed  PubMed Central  Google Scholar 

  98. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714–26.

    CAS  PubMed  Google Scholar 

  100. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645.

    CAS  PubMed  Google Scholar 

  101. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Pallini R, Ricci-Vitiani L, Banna GL, Signore M, Lombardi D, Todaro M, et al. Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res. 2008;14(24):8205–12.

    CAS  PubMed  Google Scholar 

  103. Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K, Poulou M, et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci. 2011;108(38):16062–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.

    CAS  PubMed  Google Scholar 

  105. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64(19):7011–21.

    CAS  PubMed  Google Scholar 

  106. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396.

    CAS  PubMed  Google Scholar 

  107. Trerotola M, Rathore S, Goel HL, Li J, Alberti S, Piantelli M, et al. CD133, Trop-2 and α2β1 integrin surface receptors as markers of putative human prostate cancer stem cells. Am J Transl Res. 2010;2(2):135–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Li K, Liu C, Zhou B, Bi L, Huang H, Lin T, et al. Role of EZH2 in the growth of prostate cancer stem cells isolated from LNCaP cells. Int J Mol Sci. 2013;14(6):11981–93.

    PubMed  PubMed Central  Google Scholar 

  109. Ricci E, Mattei E, Dumontet C, Eaton CL, Hamdy F, van der Pluije G, et al. Increased expression of putative cancer stem cell markers in the bone marrow of prostate cancer patients is associated with bone metastasis progression. Prostate. 2013;73(16):1738–46.

    CAS  PubMed  Google Scholar 

  110. Yun E-J, Zhou J, Lin C-J, Hernandez E, Fazli L, Gleave M, et al. Targeting cancer stem cells in castration-resistant prostate cancer. Clin Cancer Res. 2016;22(3):670–9.

    CAS  PubMed  Google Scholar 

  111. Sundberg M, Jansson L, Ketolainen J, Pihlajamäki H, Suuronen R, Skottman H, et al. CD marker expression profiles of human embryonic stem cells and their neural derivatives, determined using flow-cytometric analysis, reveal a novel CD marker for exclusion of pluripotent stem cells. Stem Cell Res. 2009;2(2):113–24.

    CAS  PubMed  Google Scholar 

  112. Lau WM, Teng E, Chong HS, Lopez KAP, Tay AYL, Salto-Tellez M, et al. CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res. 2014;74(9):2630–41.

    CAS  PubMed  Google Scholar 

  113. Maleki M, Ghanbarvand F, Behvarz MR, Ejtemaei M, Ghadirkhomi E. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells. 2014;7(2):118–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Vassilopoulos A, Chisholm C, Lahusen T, Zheng H, Deng C. A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer. Oncogene. 2014;33(47):5477–82.

    CAS  PubMed  Google Scholar 

  115. Karsten U, Goletz S. What makes cancer stem cell markers different? Springerplus. 2013;2(1):301.

    PubMed  PubMed Central  Google Scholar 

  116. Xiao J, Mu J, Liu T, Xu H. Dig the root of cancer: targeting cancer stem cells therapy. J Med Discov. 2017;2(2):1–6.

    Google Scholar 

  117. Gross A, Schoendube J, Zimmermann S, Steeb M, Zengerle R, Koltay P. Technologies for single-cell isolation. Int J Mol Sci. 2015;16(8):16897–919.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ma X, Zhang Q, Yang X, Tian J. Development of new technologies for stem cell research. Biomed Res Int. 2012;2012:741416.

    Google Scholar 

  119. Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, et al. Analysis of gene expression in single live neurons. Proc Natl Acad Sci. 1992;89(7):3010–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Fröhlich J, König H. New techniques for isolation of single prokaryotic cells. FEMS Microbiol Rev. 2000;24(5):567–72.

    PubMed  Google Scholar 

  121. Hohnadel M, Maumy M, Chollet R. Development of a micromanipulation method for single cell isolation of prokaryotes and its application in food safety. PLoS ONE. 2018;13(5):e0198208.

    PubMed  PubMed Central  Google Scholar 

  122. Wright G, Tucker MJ, Morton PC, Sweitzer-Yoder CL, Smith SE. Micromanipulation in assisted reproduction: a review of current technology. Curr Opin Obstet Gynecol. 1998;10(3):221–6.

    CAS  PubMed  Google Scholar 

  123. Lu Z, Moraes C, Zhao Y, You L, Simmons CA, Sun Y, editors. A micromanipulation system for single cell deposition. 2010 IEEE International Conference on Robotics and Automation; 2010: IEEE.

  124. Hosokawa M, Arakaki A, Takahashi M, Mori T, Takeyama H, Matsunaga T. High-density microcavity array for cell detection: single-cell analysis of hematopoietic stem cells in peripheral blood mononuclear cells. Anal Chem. 2009;81(13):5308–13.

    CAS  PubMed  Google Scholar 

  125. C-x L, Wang G-q, W-s L, J-p H, Ji A, Hu L. New cell separation technique for the isolation and analysis of cells from biological mixtures in forensic caseworks. Croat Med J. 2011;52(3):293–8.

    Google Scholar 

  126. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, et al. Laser capture microdissection. Science. 1996;274(5289):998–1001.

    CAS  PubMed  Google Scholar 

  127. Espina V, Heiby M, Pierobon M, Liotta LA. Laser capture microdissection technology. Expert Rev Mol Diagn. 2007;7(5):647–57.

    CAS  PubMed  Google Scholar 

  128. Liao L, Cheng D, Wang J, Duong DM, Losik TG, Gearing M, et al. Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection. J Biol Chem. 2004;279(35):37061–8.

    CAS  PubMed  Google Scholar 

  129. Chung SH, Shen W, Gillies MC. Laser capture microdissection-directed profiling of glycolytic and mTOR pathways in areas of selectively ablated Müller cells in the murine retina. Invest Ophthalmol Vis Sci. 2013;54(10):6578–84.

    CAS  PubMed  Google Scholar 

  130. Gautam V, Singh A, Singh S, Sarkar AK. An efficient LCM-based method for tissue specific expression analysis of genes and miRNAs. Sci Rep. 2016;6:21577.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6(2):e1000029.

    PubMed  PubMed Central  Google Scholar 

  132. Miltenyi S, Müller W, Weichel W, Radbruch A. High gradient magnetic cell separation with MACS. Cytometry 1990;11(2):231–8. https://doi.org/10.1002/cyto.990110203.

  133. Park YG, Moon JH, Kim J. A comparative study of magnetic-activated cell sorting, cytotoxicity and preplating for the purification of human myoblasts. Yonsei Med J. 2006;47(2):179–83.

    PubMed  PubMed Central  Google Scholar 

  134. Jia Z, Liang Y, Xu X, Li X, Liu Q, Ou Y, et al. Isolation and characterization of human mesenchymal stem cells derived from synovial fluid by magnetic-activated cell sorting (MACS). Cell Biol Int. 2018;42(3):262–71.

    CAS  PubMed  Google Scholar 

  135. Ravelo KM, Andersen ND, Monje PV. Magnetic-activated cell sorting for the fast and efficient separation of human and rodent schwann cells from mixed cell populations. Schwann Cells. 2018:87–109.

  136. Korkusuz P, Köse S, Yersal N, Önen S. Magnetic-based cell isolation technique for the selection of stem cells. Skin Stem Cells. 1879;2018:153–63.

    Google Scholar 

  137. Fulwyler MJ. Electronic separation of biological cells by volume. Science. 1965;150(3698):910–1.

    CAS  PubMed  Google Scholar 

  138. Robinson JP, Roederer M. Flow cytometry strikes gold. Science. 2015;350(6262):739–40.

    CAS  PubMed  Google Scholar 

  139. Hulett HR, Bonner WA, Barrett J, Herzenberg LA. Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science. 1969;166(3906):747–9.

    CAS  PubMed  Google Scholar 

  140. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and applications. Crit Rev Biotechnol. 2017;37(2):163–76.

    CAS  PubMed  Google Scholar 

  141. Reggeti F, Bienzle D. Flow cytometry in veterinary oncology. Vet Pathol. 2011;48(1):223–35.

    CAS  PubMed  Google Scholar 

  142. Schulz KR, Danna EA, Krutzik PO, Nolan GP. Single-cell phospho-protein analysis by flow cytometry. Curr Protoc Immunol. 2012;96(1):8.17.1–8.20.

    Google Scholar 

  143. Di Giaimo R, Aschenbroich S, Ninkovic J. Fluorescence-activated cell sorting-based isolation and characterization of neural stem cells from the adult zebrafish telencephalon. Astrocytes. 2019:49–66.

  144. Pimlott SL, Sutherland A. Molecular tracers for the PET and SPECT imaging of disease. Chem Soc Rev. 2011;40(1):149–62.

    CAS  PubMed  Google Scholar 

  145. Lee JW, Lee SH, Youn YJ, Ahn MS, Kim JY, Yoo BS, et al. A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction. J Korean Med Sci. 2014;29:23–31.

    PubMed  Google Scholar 

  146. Dwyer RM, Ryan J, Havelin RJ, Morris JC, Miller BW, Liu Z, et al. Mesenchymal stem cell-mediated delivery of the sodium iodide symporter supports radionuclide imaging and treatment of breast cancer. Stem Cells. 2011;29(7):1149–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Knoop K, Schwenk N, Schmohl K, Muller A, Zach C, Cyran C, et al. Mesenchymal stem cell-mediated, tumor stroma-targeted radioiodine therapy of metastatic colon cancer using the sodium iodide symporter as theranostic gene. J Nucl Med. 2015;56(4):600–6.

    CAS  PubMed  Google Scholar 

  148. Chin B, Nakamoto Y, Bulte JW, Pittenger M, Wahl R, Kraitchman D. 111In oxine labelled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction. Nucl Med Commun. 2003;24(11):1149–54.

    CAS  PubMed  Google Scholar 

  149. Howard D, Buttery LD, Shakesheff KM, Roberts SJ. Tissue engineering: strategies, stem cells and scaffolds. J Anat. 2008;213(1):66–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;2011(290602):1–19.

    Google Scholar 

  151. Sekuła M, Zuba-Surma EK. Biomaterials and stem cells: promising tools in tissue engineering and biomedical applications. Biomaterials in Regenerative Medicine. 2018:361–78.

  152. El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract. 2013;2013(3):316–42.

    PubMed  PubMed Central  Google Scholar 

  153. Memic A, Colombani T, Eggermont LJ, Rezaeeyazdi M, Steingold J, Rogers ZJ, et al. Latest advances in cryogel technology for biomedical applications. Adv Ther. 2019;2(4):1800114.

    Google Scholar 

  154. Xu C, Dai G, Hong Y. Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications. Acta Biomater. 2019;95:50–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Hixon KR, Lu T, Sell SA. A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater. 2017;62:29–41.

    CAS  PubMed  Google Scholar 

  156. Chang H-C, Yang C, Feng F, Lin F-H, Wang C-H, Chang P-C. Bone morphogenetic protein-2 loaded poly(D,L-lactide-co-glycolide) microspheres enhance osteogenic potential of gelatin/hydroxyapatite/β-tricalcium phosphate cryogel composite for alveolar ridge augmentation. J Formos Med Assoc. 2017;116(12):973–81.

    CAS  PubMed  Google Scholar 

  157. Sarkar J, Kamble SC, Patil R, Kumar A, Gosavi SW. Gelatin interpenetration in poly N-isopropylacrylamide network reduces the compressive modulus of the scaffold: a property employed to mimic hepatic matrix stiffness. Biotechnol Bioeng. 2020;117(2):567–79.

    CAS  PubMed  Google Scholar 

  158. Willerth SM, Sakiyama-Elbert SE. Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. StemJournal. 2008;(Preprint):1–25.

  159. Cherepkova MY, Sineva GS, Pospelov VA. Leukemia inhibitory factor (LIF) withdrawal activates mTOR signaling pathway in mouse embryonic stem cells through the MEK/ERK/TSC2 pathway. Cell Death Dis. 2016;7(1):e2050.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Stambolic V, Suzuki A, De La Pompa JL, Brothers GM, Mirtsos C, Sasaki T, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95(1):29–39.

    CAS  PubMed  Google Scholar 

  161. Groszer M, Erickson R, Scripture-Adams DD, Dougherty JD, Le Belle J, Zack JA, et al. PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. Proc Natl Acad Sci. 2006;103(1):111–6.

    CAS  PubMed  Google Scholar 

  162. Mercer EM, Lin YC, Murre C. Factors and networks that underpin early hematopoiesis. Semin Immunol. 2011;23(5):317–25.

    PubMed  PubMed Central  Google Scholar 

  163. Moignard V, Macaulay IC, Swiers G, Buettner F, Schütte J, Calero-Nieto FJ, et al. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat Cell Biol. 2013;15(4):363–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Opferman JT, Iwasaki H, Ong CC, Suh H, Mizuno S-I, Akashi K, et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science. 2005;307(5712):1101–4.

    CAS  PubMed  Google Scholar 

  165. Hu Y-L, Fong S, Ferrell C, Largman C, Shen W-F. HOXA9 modulates its oncogenic partner Meis1 to influence normal hematopoiesis. Mol Cell Biol. 2009;29(18):5181–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Huang J, Nguyen-McCarty M, Hexner EO, Danet-Desnoyers G, Klein PS. Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nat Med. 2012;18(12):1778–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Fu X, Xiao J, Wei Y, Li S, Liu Y, Yin J, et al. Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Res. 2015;25(6):655–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 2007;8(1):23–36.

    CAS  PubMed  Google Scholar 

  169. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–4.

    CAS  PubMed  Google Scholar 

  170. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    CAS  PubMed  Google Scholar 

  171. Blenkiron C, Miska EA. miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum Mol Genet. 2007;16(R1):R106–R13.

    CAS  PubMed  Google Scholar 

  172. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500.

    CAS  PubMed  Google Scholar 

  173. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–73.

    CAS  PubMed  Google Scholar 

  174. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, et al. Dicer is essential for mouse development. Nat Genet. 2003;35(3):215–7.

    CAS  PubMed  Google Scholar 

  175. Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell. 2008;134(3):521–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol. 2008;9:219–30.

    CAS  PubMed  Google Scholar 

  177. Fineberg SK, Kosik KS, Davidson BL. MicroRNAs potentiate neural development. Neuron. 2009;64(3):303–9.

    CAS  PubMed  Google Scholar 

  178. Boissart C, Nissan X, Giraud-Triboult K, Peschanski M, Benchoua A. miR-125 potentiates early neural specification of human embryonic stem cells. Development. 2012;139(7):1247–57.

    CAS  PubMed  Google Scholar 

  179. Zhan M, Miller CP, Papayannopoulou T, Stamatoyannopoulos G, Song C-Z. MicroRNA expression dynamics during murine and human erythroid differentiation. Exp Hematol. 2007;35(7):1015–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455:1124–8.

    CAS  PubMed  Google Scholar 

  181. Tay YM-S, Tam W-L, Ang Y-S, Gaughwin PM, Yang H, Wang W, et al. MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells. 2008;26(1):17–29.

    CAS  PubMed  Google Scholar 

  182. Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 2009;137(4):647–58.

    CAS  PubMed  Google Scholar 

  183. Judson RL, Babiarz JE, Venere M, Blelloch R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol. 2009;27:459–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Huang H, Xie C, Sun X, Ritchie RP, Zhang J, Chen YE. miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation. J Biol Chem. 2010;285(13):9383–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Guo S, Lu J, Schlanger R, Zhang H, Wang JY, Fox MC, et al. MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci. 2010;107(32):14229–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Glass C, Singla DK. MicroRNA-1 transfected embryonic stem cells enhance cardiac myocyte differentiation and inhibit apoptosis by modulating the PTEN/Akt pathway in the infarcted heart. Am J Phys Heart Circ Phys. 2011;301(5):H2038–H49.

    CAS  Google Scholar 

  187. Meenhuis A, van Veelen PA, de Looper H, van Boxtel N, van den Berge IJ, Sun SM, et al. MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice. Blood. 2011;118(4):916–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Yoo JK, Kim J, Choi SJ, Noh HM, Kwon YD, Yoo H, et al. Discovery and characterization of novel microRNAs during endothelial differentiation of human embryonic stem cells. Stem Cells Dev. 2012;21(11):2049–57.

    CAS  PubMed  Google Scholar 

  189. Ye D, Wang G, Liu Y, Huang W, Wu M, Zhu S, et al. MiR-138 promotes induced pluripotent stem cell generation through the regulation of the p53 signaling. Stem Cells. 2012;30(8):1645–54.

    CAS  PubMed  Google Scholar 

  190. Chen T, Margariti A, Kelaini S, Cochrane A, Guha ST, Hu Y, et al. MicroRNA-199b modulates vascular cell fate during iPS cell differentiation by targeting the notch ligand Jagged1 and enhancing VEGF signaling. Stem Cells. 2015;33(5):1405–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Liang J, Huang W, Cai W, Wang L, Guo L, Paul C, et al. Inhibition of microRNA-495 enhances therapeutic angiogenesis of human induced pluripotent stem cells. Stem Cells. 2017;35(2):337–50.

    CAS  PubMed  Google Scholar 

  192. Choi YJ, Lin C-P, Risso D, Chen S, Kim TA, Tan MH, et al. Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells. Science. 2017;355(6325):eaag1927.

    PubMed  PubMed Central  Google Scholar 

  193. Li B, Lu Y, Yu L, Han X, Wang H, Mao J, et al. miR-221/222 promote cancer stem-like cell properties and tumor growth of breast cancer via targeting PTEN and sustained Akt/NF-κB/COX-2 activation. Chemico-Biological Interactions. 2017;277:33–42.

    CAS  PubMed  Google Scholar 

  194. Ma Y-S, Lv Z-W, Yu F, Chang Z-Y, Cong X-L, Zhong X-M, et al. MicroRNA-302a/d inhibits the self-renewal capability and cell cycle entry of liver cancer stem cells by targeting the E2F7/AKT axis. J Exp Clin Cancer Res. 2018;37(1):252.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Assawachananont J, Mandai M, Okamoto S, Yamada C, Eiraku M, Yonemura S, et al. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Rep. 2014;2(5):662–74.

    Google Scholar 

  196. Song WK, Park K-M, Kim H-J, Lee JH, Choi J, Chong SY, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Rep. 2015;4(5):860–72.

    CAS  Google Scholar 

  197. Menasché P, Ottavio Alfieri SJ, William McKenna HR, Trinquart L, Vilquin J-T, Marolleau J-P, et al. The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008;117(9):1189–200.

    PubMed  Google Scholar 

  198. Gratwohl A, Heim D. Current role of stem cell transplantation in chronic myeloid leukaemia. Best Pract Res Clin Haematol. 2009;22(3):431–43.

    PubMed  Google Scholar 

  199. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature. 2006;441(7097):1094–6.

    CAS  PubMed  Google Scholar 

  200. Mackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain. 2008;131(9):2376–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363(2):147–55.

    CAS  PubMed  Google Scholar 

  202. Wehman B, Kaushal S. The emergence of stem cell therapy for patients with congenital heart disease. Circ Res. 2015;116(4):566–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Liu L, Michowski W, Inuzuka H, Shimizu K, Nihira NT, Chick JM, et al. G1 cyclins link proliferation, pluripotency and differentiation of embryonic stem cells. Nat Cell Biol. 2017;19(3):177–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Park I-H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, et al. Disease-specific induced pluripotent stem cells. Cell. 2008;134(5):877–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Mou X, Wu Y, Cao H, Meng Q, Wang Q, Sun C, et al. Generation of disease-specific induced pluripotent stem cells from patients with different karyotypes of down syndrome. Stem Cell Res Ther. 2012;3(2):14.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Kriks S, Shim J-W, Piao J, Ganat YM, Wakeman DR, Xie Z, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 2011;480(7378):547–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Nori S, Okada Y, Yasuda A, Tsuji O, Takahashi Y, Kobayashi Y, et al. Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci. 2011;108(40):16825–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Takayama N, Nishimura S, Nakamura S, Shimizu T, Ohnishi R, Endo H, et al. Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells. J Exp Med. 2010;207(13):2817–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Wong JM, Collins K. Telomerase RNA level limits telomere maintenance in X-linked dyskeratosis congenita. Genes Dev. 2006;20(20):2848–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Agarwal S, Loh Y-H, McLoughlin EM, Huang J, Park I-H, Miller JD, et al. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature. 2010;464(7286):292–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Sterberg C. Topography of the layer of rods and cones in the human retina. Acta. 1935:11–97.

  212. Berry M, Ahmed Z, Lorber B, Douglas M, Logan A. Regeneration of axons in the visual system. Restor Neurol Neurosci. 2008;26(2, 3):147–74.

    PubMed  Google Scholar 

  213. Oswald J, Baranov P. Regenerative medicine in the retina: from stem cells to cell replacement therapy. Ther Adv Ophthalmol. 2018;10:1–18.

    Google Scholar 

  214. Ritter MR, Banin E, Moreno SK, Aguilar E, Dorrell MI, Friedlander M. Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest. 2006;116(12):3266–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Kannarkat GT, Boss JM, Tansey MG. The role of innate and adaptive immunity in Parkinson’s disease. J Park Dis. 2013;3(4):493–514.

    Google Scholar 

  216. De Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525–35.

    PubMed  Google Scholar 

  217. Das S, Misra A, Ray B, Hazra A, Ghosal M, Chaudhuri A, et al. Epidemiology of Parkinson disease in the city of Kolkata, India: a community-based study. Neurology. 2010;75(15):1362–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Lindvall O, Kokaia Z. Prospects of stem cell therapy for replacing dopamine neurons in Parkinson's disease. Trends Pharmacol Sci. 2009;30(5):260–7.

    CAS  PubMed  Google Scholar 

  219. Odekerken VJ, van Laar T, Staal MJ, Mosch A, Hoffmann CF, Nijssen PC, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12(1):37–44.

    PubMed  Google Scholar 

  220. Gao H-M, Liu B, Zhang W, Hong J-S. Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci. 2003;24(8):395–401.

    CAS  PubMed  Google Scholar 

  221. Allan LE, Petit GH, Brundin P. Cell transplantation in Parkinson’s disease: problems and perspectives. Curr Opin Neurol. 2010;23(4):426–32.

    PubMed  Google Scholar 

  222. Barker RA, Drouin-Ouellet J, Parmar M. Cell-based therapies for Parkinson disease—past insights and future potential. Nat Rev Neurol. 2015;11(9):492–503.

    CAS  PubMed  Google Scholar 

  223. Lindvall O. Clinical translation of stem cell transplantation in Parkinson’s disease. J Intern Med. 2016;279(1):30–40.

    CAS  PubMed  Google Scholar 

  224. Ishii T, Eto K. Fetal stem cell transplantation: past, present, and future. World J Stem Cells. 2014;6(4):404–20.

    PubMed  PubMed Central  Google Scholar 

  225. Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci. 2004;101(34):12543–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Kiskinis E, Eggan K. Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest. 2010;120(1):51–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Ganat YM, Calder EL, Kriks S, Nelander J, Tu EY, Jia F, et al. Identification of embryonic stem cell–derived midbrain dopaminergic neurons for engraftment. J Clin Invest. 2012;122(8):2928–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Vilaca-Faria H, Salgado AJ, Teixeira FG. Mesenchymal stem cells-derived exosomes: a new possible therapeutic strategy for Parkinson’s disease? Cells. 2019;8(118):1–17.

    Google Scholar 

  229. Marote A, Teixeira FG, Mendes-Pinheiro B, Salgado AJ. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential. Front Pharmacol. 2016;7(231):1–8.

    Google Scholar 

  230. Teixeira FG, Panchalingam KM, Assuncao-Silva R, Serra SC, Mendes-Pinheiro B, Patricio P, et al. Modulation of the mesenchymal stem cell secretome using computer-controlled bioreactors: impact on neuronal cell proliferation. Sci Rep. 2016;6(27791):1–14. https://doi.org/10.1038/srep27791

  231. Teixeira FG, Neves-Carvalho A, Panchalingam KM, Behie LA, Pinto L, Sousa N, et al. Secretome of mesenchymal progenitors from the umbilical cord acts as modulator of neural/glial proliferation and differentiation. Stem Cell Rev Rep. 2015;11:288–97.

    CAS  PubMed  Google Scholar 

  232. Assuncao-Silva RC, Mendes-Pinheiro B, Patricio P, Behie LA, Teixeira FG, Pinto L, et al. Exploiting the impact of the secretome of MSCs isolated from different tissue sources on neuronal differentiation and axonal growth. Biochimie. 2018;155:83–91.

    CAS  PubMed  Google Scholar 

  233. Matsuse D, Kitada M, Ogura F, Wakao S, Kohama M, Kira J-I, et al. Combined transplantation of bone marrow stromal cell-derived neural progenitor cells with a collagen sponge and basic fibroblast growth factor releasing microspheres enhances recovery after cerebral ischemia in rats. Tissue Eng A. 2011;17(15–16):1993–2004.

    CAS  Google Scholar 

  234. Hosseini SM, Farahmandnia M, Razi Z, Delavari S, Shakibajahromi B, Sarvestani FS, et al. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats. Int J Stem Cells. 2015;8(1):99–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Bryukhovetskiy IS, Dyuizen IV, Shevchenko VE, Bryukhovetskiy AS, Mischenko PV, Milkina EV, et al. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep. 2016;14(5):4511–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Bryukhovetskiy I, Mischenko P, Tolok E, Khotimchenko Y, Zaitcev S, Bryukhovetskiy A. Hematopoietic stem cells with induced apoptosis effectively inhibit glioma cell growth in vitro, but started new mechanism of tumour stem cells. Genes Cells. 2014;9:70–5.

    Google Scholar 

  237. Mu J, Bakreen A, Juntunen M, Korhonen P, Oinonen E, Cui L, et al. Combined adipose tissue-derived mesenchymal stem cell therapy and rehabilitation in experimental stroke. Front Neurol. 2019;10:235.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

AKS, SKS and VG acknowledges Centre of Experimental Medicine and Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, India for internal grants. NR acknowledges University Grants Commission (UGC), New Delhi, India for Junior Research Fellowship. BG and SCK would like to acknowledge Department of Technology, Savitribai Phule Pune University, Pune, India for funding. VG acknowledges Science and Engineering Research Board (SERB), New Delhi, India for funding under Empowerment and Equity Opportunities for Excellence in Science scheme (EMEQ/2019/000025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibhav Gautam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, N., Singh, A.K., Singh, S.K. et al. Recent technological advancements in stem cell research for targeted therapeutics. Drug Deliv. and Transl. Res. 10, 1147–1169 (2020). https://doi.org/10.1007/s13346-020-00766-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00766-9

Keywords

Navigation