Skip to main content

Advertisement

Log in

Design and optimization of film-forming gel of etoricoxib using research surface methodology

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The present investigation is focused on the development of transdermal film-forming gel (FFG) loaded with etoricoxib employing research surface methodology (RSM). Box-Behnken surface design method was used to develop experimental run using different concentrations of etoricoxib, hydroxypropyl methylcellulose (HPMC K100M), and eudragit RL100 as independent variables, and Derringer’s optimization tool was employed to optimize best possible formulation. The dependent variables considered in this study were viscosity and drug permeation at 24 h (Q24, μg/cm2). Anti-inflammatory study was performed on Wistar albino rats for 8 h. Skin irritation studies and accelerated stability studies were performed for validated FFG formulations. Quadratic model was found to be best fit model (p < 0.0001) for both the responses. The influence of HPMC concentration on the viscosity was found to be highest whereas concentration of etoricoxib was maximum for Q24. The optimum composition of the FFG was observed to be 4% of etoricoxib, 1.1246% of HPMC, and 0.4% of eudragit. Above composition resulted in viscosity of 1549.5 mPa.s and maximum Q24 of 4639.11 μg/cm2 with desirability 0.918. The in vivo anti-inflammatory study demonstrated better sustained release effect (for 8 h) of optimized FFG compared to orally administered drug suspension. An average irritation score of 0.555 was observed on Draize scoring system. The validated FFG formulation was found to be stable for the 3 months in accelerated conditions. It can be concluded from the above investigations that the validated FFG formulation of etoricoxib is well tolerated and could provide sustained drug release for 8 h.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DSC:

differential scanning calorimeter

HPMC:

hydroxypropyl methylcellulose

FFG:

film-forming gel

DOE:

design of experiments

RSM:

research surface methodology

NSAIDs:

non-steroidal anti-inflammatory drugs

COX-2:

cyclooxygenase-2

HPLC:

high-performance liquid chromatography

CV:

coefficient of variation

SC:

stratum corneum

Q24:

amount of drug permeated per unit area

ANOVA:

analysis of variance

DDW:

double distilled water

References

  1. Agrawal SS, Pruthi JK. Development and evaluation of matrix type transdermal patch of ethinylestradiol and medroxyprogesterone acetate for anti-implantation activity in female Wistar rats. Contraception. 2011;84:533–8.

    Article  CAS  PubMed  Google Scholar 

  2. Guo R, Du X, Zhang R, Deng L, Dong A, Zhang J. Bioadhesive film formed from a novel organic–inorganic hybrid gel for transdermal drug delivery system. Eur J Pharm Biopharm. 2011;79:574–83.

    Article  CAS  PubMed  Google Scholar 

  3. Parhi R, Suresh P, Pattnaik S. Application of response surface methodology for design and optimization of reservoir-type transdermal patch of simvastatin. Curr Drug Deliv. 2016;13:742–53.

  4. Parhi R, Suresh P. Transdermal delivery of diltiazem HCl from matrix film: Effect of penetration enhancers and study of antihypertensive activity in rabbit model. J Adv Res. 2016;7:539–50.

    Article  CAS  PubMed  Google Scholar 

  5. Teodorescu F, Quéniat G, Foulon C, Lecoeur M, Barras A, Boulahneche S, et al. Transdermal skin patch based on reduced graphene oxide: a new approach for photothermal triggered permeation of OS across porcine skin. J Control Release. 2017;245:137–46.

    Article  CAS  PubMed  Google Scholar 

  6. Ahmed TA, El-Say KM. Transdermal film-loaded finasteride microplates to enhance drug skin permeation: two-step optimization study. Eur J Pharm Sci. 2016;88:246–56.

    Article  CAS  PubMed  Google Scholar 

  7. Mori NM, Patel P, Sheth NR, Rathod LV, Ashara KC. Fabrication and characterization of film-forming voriconazole transdermal spray for the treatment of fungal infection. Bull Fac Pharm (Cairo Univ). 2017;55:41–51.

  8. Devaux S, Castela A, Archier E, Gallini A, Joly P, Misery L, et al. Adherence to topical treatment in psoriasis: a systematic literature review. J Eur Acad Dermatol Venereol. 2012;26:61–7.

    Article  PubMed  Google Scholar 

  9. Tan X, Feldman SR, Chang J, Balkrishnan R. Topical drug delivery systems in dermatology: a review of patient adherence issues. Expert Opin Drug Del. 2012;9:1263–71.

  10. Dhiman S, Singh GT, Rehni AK. Transdermal patches: a recent approach to new drug delivery system. Int J Pharm Pharm Sci. 2011;3:26–34.

    CAS  Google Scholar 

  11. Kathe K, Kathpalia H. Film forming systems for topical and transdermal drug delivery. Asian J Pharm Sci. 2017;12:487–97.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sheshala R, Khan N, Chitneni M, Darwis Y. Formulation and in vivo evaluation of OS orally disintegrating tablets using different superdisintegrants. Arch Pharm Res. 2011;34:1945–56.

    Article  CAS  PubMed  Google Scholar 

  13. McAuley WJ, Caserta F. Film forming and heated systems. In: Donnelly RF, Singh R, editors. Novel delivery systems for transdermal and intradermal drug delivery. Chichester: Wiley; 2015. p. 97–124.

    Chapter  Google Scholar 

  14. Edwards A, Qi S, Liu F, Brown MB, McAuley WJ. Rationalising polymer selection for supersaturated film forming systems produced by an aerosol spray for the transdermal delivery of methylphenidate. Eur J Pharm Biopharm. 2017;114:164–74.

    Article  CAS  PubMed  Google Scholar 

  15. Kuorinka I. Standardised Nordic questionnaires for the analysis of musculoskeletal symptoms. J Appl Agron. 1987;18:233–7.

  16. Sprig CA. Work characteristics, musculoskeletal disorders, and the mediating role of psychological strain: A study of call center employees. J Appl Psychol. 2007;9:1456–66.

    Article  Google Scholar 

  17. Khan MRU, Hussaina M, Razaa SM, Nazirc SUR, Ahmedb A, Hasnain S. formulation design and in vitro characterization of etoricoxib cream for the treatment of rheumatoid arthritis. Iran J Pharm Sci. 2014;10:93–104.

    Google Scholar 

  18. Escribano E, Calpena AC, Queralt J, Obach R, Domenech J. Assessment of diclofenac permeation with different formulations: anti-inflammatory study of a selected formula. Eur J Pharm Sci. 2003;19:203–10.

    Article  CAS  PubMed  Google Scholar 

  19. Lee PJ, Langer R, Shastri VP. Novel microemulsion enhancer formulation for simultaneous transdermal delivery of hydrophilic and hydrophobic drugs. Pharm Res. 2003;20:264–9.

    Article  CAS  PubMed  Google Scholar 

  20. Lala RR, Awari NG. Nanoemulsion-based gel formulations of COX-2 inhibitors for enhanced efficacy in inflammatory conditions. Appl Nanosci. 2014;4:143–51.

    Article  CAS  Google Scholar 

  21. Kesharwani R, Sachan A, Singh S, Patel D. Formulation and evaluation of solid lipid nanoparticle (SLN) based topical gel of etoricoxib. J Appl Pharm Sci. 2016;6:124–31.

    Article  CAS  Google Scholar 

  22. Patel HM, Suhagia BN, Shah SA, Rathod IS, Parmar VK. Preparation and characterization of etoricoxib-β-cyclodextrin complexes prepared by the kneading method. Acta Pharma. 2007;57:351–9.

    CAS  Google Scholar 

  23. Okumu A, DiMaso M, Lobenberg R. Computer simulations using GastroPlus to justify a biowaiver for etoricoxib solid oral drug products. Eur J Pharm Biopharm. 2009;72:91–8.

    Article  CAS  PubMed  Google Scholar 

  24. Witek-Krowiak A, Chojnacka K, Podstawczyk D, Dawiec A, Pokomeda K. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour Technol. 2014;160:150–60.

    Article  CAS  PubMed  Google Scholar 

  25. Bagde A, Patel K, Kutlehria S, Chowdhury N, Singh M. Formulation of topical ibuprofren solid lipid nanoparticles (SLN) gel using hot melt extrusion technique (HME) and determining its anti-inflammatory strength. Drug Deliv Transl Res. 2019;9:816–27.

    Article  CAS  PubMed  Google Scholar 

  26. Box GEP, Wilson KB. On the experimental attainment of optimum conditions. J R Stat Soc. 1951;13:1–45.

    Google Scholar 

  27. Hayta M, İşçimen EM. Optimization of ultrasound-assisted antioxidant compounds extraction from germinated chickpea using response surface methodology. LWT-Food Sci Technol. 2017;77:208–16.

    Article  CAS  Google Scholar 

  28. Jain S, Patel K, Arora S, Reddy VA, Dora CP. Formulation, optimization, and in vitro-in vivo evaluation of olmesartan medoxomil nanocrystals. Drug Deliv Transl Res. 2017;7:292–303.

    Article  CAS  PubMed  Google Scholar 

  29. Mazarei F, Jooyandeh H, Noshad M, Hojjat M. Polysccharide of caper (Capparis spinosa L.) Leaf: Extraction optimization, antioxidant potential and antimicrobial activity. Int J Biol Macromol. 2017;95:224–31.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao G, Wang H, Liu G, Wang Z. Box-Behnken response surface design for the optimization of electrochemical detection of cadmium by Square Wave Anodic Stripping Voltammetry on bismuth film/glassy carbon electrode. Sensors Actuators B. 2016;235:67–73.

    Article  CAS  Google Scholar 

  31. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as atool for optimization in analytical chemistry. Talenta. 2008;76:965–77.

    Article  CAS  Google Scholar 

  32. Sharmila G, Nidhi B, Muthukumaran C. Sequential statistical optimization of red pigment production by Monascus puppureus (MTCC 369) using potato powder. Ind Crop Prod. 2013;44:158–64.

    Article  CAS  Google Scholar 

  33. Wu J, Yu D, Sun H, Zhang Y, Zhang W, Meng F, et al. Optimizing the extraction of anti-tumor alkaloids from the stem of Berberis amurensis by response surface methodology. Ind Crop Prod. 2015;69:68–75.

    Article  CAS  Google Scholar 

  34. Pawer J, Suryawanshi D, Moravkar K, Aware R, Shetty V, Maniruzzaman M, et al. Study the influence of formulation process parameters on solubility and dissolution enhancement of efavirenz solid solutions prepared by hot-melt extrusion: a QbD methodology. Drug Deliv and Transl Res. 2018;8:1644–57.

    Article  CAS  Google Scholar 

  35. Kosegarten CE, Ramirez-Corona N, Mani-Lopez E, Palou E, Lopez-Malo A. Description of Aspergillus flavus growth under the influence of different factors (water activity, incubation temperature, protein and fat concentration, pH, and cinnamon essential concentration) by kinetic, probability of growth, and time-to-detection models. Int J Food Microbiol. 2017;240:115–23.

    Article  CAS  PubMed  Google Scholar 

  36. Parhi R, Suresh P. Formulation optimization and characterization of transdermal film of simvastatin by response surface methodology. Mater Sci Eng C. 2016;58:331–41.

    Article  CAS  Google Scholar 

  37. Indre S, Vitalis B. Effect of film-forming polymers on release of naftifine hydrochloride from nail lacquers. Int J Polym Sci. 2017;2017:7.

    Google Scholar 

  38. Wang D, Zhao J, Liu X, Sun F, Zhou Y, Teng L, et al. Parenteral thermo-sensitive organogel for schizophrenia therapy, in vitro and in vivo evaluation. Eur J Pharm Sci. 2014;60:40–8.

    Article  CAS  PubMed  Google Scholar 

  39. Moghimi HR, Makhmalzadeh BS, Manafi A. Enhancement effect of terpenes on silver sulphadiazine permeation through third-degree burn eschar. Burns. 2009;35:1165–70.

    Article  PubMed  Google Scholar 

  40. Parhi R, Suresh P, Pattnaik S. Pluronic lecithin organogel (PLO) of diltiazem hydrochloride: effect of solvents/penetration enhancers on ex vivo permeation. Drug Deliv Transl Res. 2016;6:243–53.

    Article  CAS  PubMed  Google Scholar 

  41. Azoubel MCF, Menezes AMA, Bezerra D, Oriá RB, Ribeiro RA, Brito GAC. Comparison of etoricoxib and indomethacin for the treatment of experimental periodontitis in rats. Braz J Med Biol Res. 2007;40:117–25.

    Article  CAS  PubMed  Google Scholar 

  42. Ibrahim MM, Hafez SA, Mahdy MM. Organogels, hydrogels and bigels as transdermal delivery systems for Diltiazem hydrochloride. Asian J Pharm Sci. 2013;8:48–57.

    Article  CAS  Google Scholar 

  43. Winter CA, Risley EA, Nuss GW. Carrageenin-induced edema in hind paws of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med. 1962;111:544–7.

    Article  CAS  PubMed  Google Scholar 

  44. Bhavesh KL, Hiray RS, Ghongane BB. Evaluation of analgesic and anti-inflammatory activity of extract of Holoptelea Integrifolia and Argyreia Speciosa in animal models. J Clin Diagn Res. 2015;9:FF01–4.

    Google Scholar 

  45. Nesseem DI, Eid SF, El-Houseny SS. Development of novel transdermal self-adhesive films for tenoxicam, an anti-inflammatory drug. Life Sci. 2011;89:430–8.

    Article  CAS  PubMed  Google Scholar 

  46. Draize JH, Woodard G, Calvery HO. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther. 1944;82:377–90.

    CAS  Google Scholar 

  47. Parhi R, Panchamukhi T. RSM-based design and optimization of transdermal film of ondansetron HCl. J Pharm Innov. 2019. https://doi.org/10.1007/s12247-019-09373-9.

  48. Chaudhary H, Rohilla A, Rathee P, Kumar V. Optimization and formulation design of carbopol loaded Piroxicam gel using novel penetration enhancers. Int J Biol Macromol. 2013;55:246–53.

    Article  CAS  PubMed  Google Scholar 

  49. Bhunia T, Giri A, Nasim T, Chattopadhyay D, Bandyopadhyay A. Uniquely different PVA-xanthan gum irradiated membranes as transdermal Diltiazem delivery device. Carbohydr Polym. 2013;95:252–61.

    Article  CAS  PubMed  Google Scholar 

  50. Parhi R. Development and optimization of pluronic® F127 and HPMC based thermosensitive gel for the skin delivery of metoprolol succinate. J Drug Deliv Sci Technol. 2016;36:23–33.

    Article  CAS  Google Scholar 

  51. Varshosaz J, Tavakoli N, Saidan S. Development and characterization of a periodontal bioadhesive gel of metronidazole. Drug Deliv. 2002;9:127–33.

    Article  CAS  PubMed  Google Scholar 

  52. Parhi R, Suresh P, Pattnaik S. Transdermal delivery of diltiazem hydrochloride from poloxamer-HPMC gel: in vitro, ex vivo, and in vivo studies. Drug Deliv Lett. 2015;5:163–72.

    Article  CAS  Google Scholar 

  53. Vintiloiu A, Leroux JC. Organogels and their use in drug delivery-A review. J Control Release. 2008;125:179–92.

    Article  CAS  PubMed  Google Scholar 

  54. Parhi R, Reddy SS, Swain S. Transdermal delivery of ondansetron HCl from thermoreversible gel containing nanocomposite. Curr Nanomater. 2019;4:137–47.

    Article  CAS  Google Scholar 

  55. Wang C, Zhang J, Wang F, Wang Z. Extraction of crude polysaccharides from Gomphidius rutilus and their antioxidant activities in vitro. Carbohydr Polym. 2013;94:479–86.

    Article  CAS  PubMed  Google Scholar 

  56. Ye F, Lei D, Wang S, Zhao G. Polymeric micelles of octenylsuccinated corn dextrin as vehicles to solubilize curcumin. LWT-Food Sci Technol. 2017;75:187–94.

    Article  CAS  Google Scholar 

  57. Zhao L, Li Q, Xu X, Kong W, Li X, Su Y, et al. A novel Entermorpha based hydrogel optimized with Box-Behnken response surface method: Synthesis, characterization and swelling behaviors. Chem Eng J. 2016;287:537–44.

    Article  CAS  Google Scholar 

  58. Karacabey E, Mazza G. Optimisation of antioxidant activity of grape cane extracts using response surface methodology. Food Chem. 2010;119:343–8.

    Article  CAS  Google Scholar 

  59. Maran JP, Manikandan S, Thirugnanasambandham K, Nivetha CV, Dinesh R. Box-Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide. Carbohydr Polym. 2013;92:604–11.

    Article  CAS  Google Scholar 

  60. Wu H, Zhu J, Diao W, Wang C. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata). Carbohydr Polym. 2014;113:314–24.

    Article  CAS  PubMed  Google Scholar 

  61. Chang R-K, Raw A, Lionberger R, Yu L. Generic development of topical dermatologic products: formulation development, process development, and testing of topical dermatologic products. AAPS J. 2013;15:41–52.

    Article  CAS  PubMed  Google Scholar 

  62. Shin S-C, Cho C-W. Enhanced transdermal delivery of pranoprofen from the bioadhesive gels. Arch Pharm Res. 2006;29:928–33.

    Article  CAS  PubMed  Google Scholar 

  63. Subedi RK, Oh SY, Chun M-K, Choi HK. Recent advances in transdermal drug delivery. Arch Pharm Res. 2010;33:339–51.

    Article  CAS  PubMed  Google Scholar 

  64. Martins M, Azoia NG, Ribeiro A, Shimanovich U, Silva C, Cavaco-Paulo A. In vitro and computational studies of transdermal perfusion of nanoformulations containing a large molecular weight protein. Colloids Surf B: Biointerfaces. 2013;108:271–8.

    Article  CAS  PubMed  Google Scholar 

  65. Parhi R, Suresh P, Patnaik S. Physical means of stratum corneum barrier manipulation to enhance transdermal drug delivery. Curr Drug Deliv. 2015;12:122–38.

    Article  CAS  PubMed  Google Scholar 

  66. Li X, Zhang R, Liang R, Liu W, Wang C, Su Z, et al. Preparation and characterization of sustained-release rotigotine film-forming gel. Int J Pharm. 2014;460:273–9.

    Article  CAS  PubMed  Google Scholar 

  67. Rhee YS, Chang SY, Park CW, Chi SC, Park ES. Optimization of ibuprofen gel formulations using experimental design technique for enhanced transdermal penetration. Int J Pharm. 2008;364:14–20.

    Article  CAS  PubMed  Google Scholar 

  68. Iervolino M, Cappello B, Raghavan SL, Hadgraft J. Penetration enhancement of ibuprofen from supersaturated solutions through human skin. Int J Pharm. 2001;212:131–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Sumanta Mondal, Assistant Professor, GITAM Institute of Pharmacy, GITAM Deemed to be University, Visakhapatnam campus for helping in conducting in vivo study. The authors also grateful to the management of GITAM Deemed to be University, Visakhapatnam, for providing facilities for the smooth conduct of the research work.

Availability of data and materials

Maximum amount of data are presented in this manuscript out of all the data generated or analyzed.

Funding

The present investigation is self-funded.

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by Rabinarayan Parhi and performed by V.V. Nishanth Goli. The interpretation and writing of the manuscript was carried out by Rabinarayan Parhi. All the authors have approved the final manuscript.

Corresponding author

Correspondence to Rabinarayan Parhi.

Ethics declarations

Conflict of interest

The authors declare that they have no of conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parhi, R., Goli, V.V.N. Design and optimization of film-forming gel of etoricoxib using research surface methodology. Drug Deliv. and Transl. Res. 10, 498–514 (2020). https://doi.org/10.1007/s13346-019-00695-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00695-2

Keywords

Navigation