Skip to main content

Advertisement

Log in

Development of a nanomedicine-loaded hydrogel for sustained delivery of an angiogenic growth factor to the ischaemic myocardium

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The 5-year mortality rate for heart failure borders on 50%. The main cause is an ischaemic cardiac event where blood supply to the tissue is lost and cell death occurs. Over time, this damage spreads and the heart is no longer able to pump efficiently. Increasing vascularisation of the affected area has been shown to reduce patient symptoms. The growth factors required to do this have short half-lives making development of an efficacious therapy difficult. Herein, the angiogenic growth factor Vascular Endothelial Growth Factor (VEGF) is complexed electrostatically with star-shaped or linear polyglutamic acid (PGA) polypeptides. Optimised PGA-VEGF nanomedicines provide VEGF encapsulation of > 99% and facilitate sustained release of VEGF for up to 28 days in vitro. The star-PGA-VEGF nanomedicines are loaded into a percutaneous delivery compliant hyaluronic acid hydrogel. Sustained release of VEGF from the composite nano-in-gel system is evident for up to 35 days and the released VEGF has comparable bioactivity to free, fresh VEGF when tested on both Matrigel® and scratch assays. The final star-PGA-VEGF nanomedicine-loaded hydrogel is biocompatible and provides sustained release of bioactive VEGF. Therefore, we report the development of novel, self-assembling PGA-VEGF nanomedicines and their incorporation into a hyaluronic acid hydrogel that is compatible with medical devices to enable minimally invasive delivery to the heart. The final star-PGA-VEGF nanomedicine-loaded hydrogel is biocompatible and provides sustained release of bioactive VEGF. This formulation provides the basis for optimal spatiotemporal delivery of an angiogenic growth factor to the ischaemic myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pittman RN. The circulatory system and oxygen transport. In: Regulation of tissue oxygenation. Morgan & Claypool Life Sciences: San Rafael; 2011.

    Google Scholar 

  2. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Blood vessels and endothelial cells. In: Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.

    Google Scholar 

  3. Buja LM, Vander Heide RS. Pathobiology of ischemic heart disease: past, present and future. Cardiovasc Pathol. 2016 May;25(3):214–20.

    Article  PubMed  Google Scholar 

  4. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.

    Article  CAS  Google Scholar 

  5. Duffy GP, McFadden TM, Byrne EM, Gill S-L, Farrell E, O’Brien FJ. Towards in vitro vascularisation of collagen-GAG scaffolds. Eur Cell Mater. 2011;21:15–30.

    Article  CAS  PubMed  Google Scholar 

  6. Shah AM, Mann DL. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet. 2011;378(9792):704–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cochain C, Channon KM, Silvestre J-S. Angiogenesis in the infarcted myocardium. Antioxid Redox Signal. 2013;18(9):1100–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adair TH, Montani J-P. Angiogenesis. Morgan & Claypool Life Sciences; 2010.

  9. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989;161(2):851–8.

    Article  CAS  PubMed  Google Scholar 

  10. Thomas KA. Vascular endothelial growth factor, a potent and selective angiogenic agent. J Biol Chem. 1996;271(2):603–6.

    Article  CAS  PubMed  Google Scholar 

  11. Henry TD, Rocha-Singh K, Isner JM, Kereiakes DJ, Giordano FJ, Simons M, et al. Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. Am Heart J. 2001;142(5):872–80.

    Article  CAS  PubMed  Google Scholar 

  12. Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, et al. The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation. 2003;107(10):1359–65.

    Article  CAS  PubMed  Google Scholar 

  13. Silva EA, Mooney DJ. Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials. 2010;31(6):1235–41.

    Article  CAS  PubMed  Google Scholar 

  14. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55(3):329–47.

    Article  CAS  PubMed  Google Scholar 

  15. Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. Int J Pharm. 2002;233(1–2):51–9.

    Article  CAS  PubMed  Google Scholar 

  16. Golub J, Kim Y, Duvall C, Bellamakonda R, Gupta D, Lin A, et al. Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol. 2010;298(6):H1959–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xie J, Wang H, Wang Y, Ren F, Yi W, Zhao K, et al. Induction of angiogenesis by controlled delivery of vascular endothelial growth factor using nanoparticles. Cardiovasc Ther. 2013;31(3):e12–8.

    Article  CAS  PubMed  Google Scholar 

  18. des Rieux A, Ucakar B, Mupendwa BPK, Colau D, Feron O, Carmeliet P, et al. 3D systems delivering VEGF to promote angiogenesis for tissue engineering. J Control Release. 2011;150(3):272–8.

    Article  CAS  PubMed  Google Scholar 

  19. Gu F, Amsden B, Neufeld R. Sustained delivery of vascular endothelial growth factor with alginate beads. J Control Release. 2004;96(3):463–72.

    Article  CAS  PubMed  Google Scholar 

  20. Oduk Y, Zhu W, Kannappan R, Zhao M, Borovjagin AV, Oparil S, et al. VEGF nanoparticles repair the heart after myocardial infarction. Am J Physiol Circ Physiol. 2018;314(2):H278–84.

    Article  CAS  Google Scholar 

  21. Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yan Y, Wei D, Li J, Zheng J, Shi G, Luo W, et al. A poly(l-lysine)-based hydrophilic star block co-polymer as a protein nanocarrier with facile encapsulation and pH-responsive release. Acta Biomater. 2012;8(6):2113–20.

    Article  CAS  PubMed  Google Scholar 

  23. Byrne M, Thornton PD, Cryan S-A, Heise A. Star polypeptides by NCA polymerisation from dendritic initiators: synthesis and enzyme controlled payload release. Polym Chem. 2012;3(10):2825.

    Article  CAS  Google Scholar 

  24. Wang X, Wu X, Xing H, Zhang G, Shi Q, E L, et al. Porous nanohydroxyapatite/collagen scaffolds loading insulin PLGA particles for restoration of critical size bone defect. ACS Appl Mater Interfaces. 2017;9(13):11380–91.

    Article  CAS  PubMed  Google Scholar 

  25. Saludas L, Pascual-Gil S, Prósper F, Garbayo E, Blanco-Prieto M. Hydrogel based approaches for cardiac tissue engineering. Int J Pharm. 2017;523(2):454–75.

    Article  CAS  PubMed  Google Scholar 

  26. Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules. 2011;12(5):1387–408.

    Article  CAS  PubMed  Google Scholar 

  27. Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23(12):H41–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dolan EB, Kovarova L, O’Neill H, Pravda M, Sulakova R, Scigalkova I, et al. Advanced Material Cath eter (AMCath), a minimally invasive endocardial catheter for the delivery of fast-gelling covalently cross-linked hyaluronic acid hydrogels. J Biomater Appl. 2018;33(5):681–92.

    Article  CAS  PubMed  Google Scholar 

  29. Bhatt P, Lalani R, Vhora I, Patil S, Amrutiya J, Misra A, et al. Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: enhanced loading efficiency and its pharmacokinetic evaluation. Int J Pharm. 2018;536(1):95–107.

    Article  CAS  PubMed  Google Scholar 

  30. Shen S, Wu Y, Liu Y, Wu D. High drug-loading nanomedicines: progress, current status, and prospects. Int J Nanomedicine. 2017;12:4085–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tahergorabi Z, Khazaei M. A review on angiogenesis and its assays. Iran J Basic Med Sci. 2012;15(6):1110–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N. Angiogenesis assays: a critical overview. Clin Chem. 2003;49(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  33. Arnaoutova I, Kleinman HK. In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc. 2010;5(4):628–35.

    Article  CAS  PubMed  Google Scholar 

  34. Quinlan E, López-Noriega A, Thompson EM, Hibbitts A, Cryan SA, O’Brien FJ. Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair. J Tissue Eng Regen Med. 2017;11(4):1097–109.

    Article  CAS  PubMed  Google Scholar 

  35. Duro-Castano A, England RM, Razola D, Romero E, Oteo-Vives M, Morcillo MA, et al. Well-defined star-shaped polyglutamates with improved pharmacokinetic profiles as excellent candidates for biomedical applications. Mol Pharm. 2015;12(10):3639–49.

    Article  CAS  PubMed  Google Scholar 

  36. Anderson W, Kozak D, Coleman VA, Jämting ÅK, Trau M. A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci. 2013;405:322–30.

    Article  CAS  PubMed  Google Scholar 

  37. Filipe V, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27(5):796–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Byrne M, Victory D, Hibbitts A, Lanigan M, Heise A, Cryan S-A. Molecular weight and architectural dependence of well-defined star-shaped poly(lysine) as a gene delivery vector. Biomater Sci. 2013;1(12):1223.

    Article  CAS  PubMed  Google Scholar 

  39. Kita K, Dittrich C. Drug delivery vehicles with improved encapsulation efficiency: taking advantage of specific drug–carrier interactions. Expert Opin Drug Deliv. 2011;8(3):329–42.

    Article  CAS  PubMed  Google Scholar 

  40. Rui J, Dadsetan M, Runge MB, Spinner RJ, Yaszemski MJ, Windebank AJ, et al. Controlled release of vascular endothelial growth factor using poly-lactic-co-glycolic acid microspheres: in vitro characterization and application in polycaprolactone fumarate nerve conduits. Acta Biomater. 2012;8(2):511–8.

    Article  CAS  PubMed  Google Scholar 

  41. Mortensen A, Aguilar F, Crebelli R, Di Domenico A, Dusemund B, Frutos MJ, et al. Re-evaluation of glutamic acid (E 620), sodium glutamate (E 621), potassium glutamate (E 622), calcium glutamate (E 623), ammonium glutamate (E 624) and magnesium glutamate (E 625) as food additives. EFSA J. 2017;15(7).

  42. Kleinheinz J, Jung S, Wermker K, Fischer C, Joos U. Release kinetics of VEGF165 from a collagen matrix and structural matrix changes in a circulation model. Head Face Med. 2010;6:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Staton CA, Reed MWR, Brown NJ. A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol. 2009;90(3):195–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liang C-C, Park AY, Guan J-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2(2):329–33.

    Article  CAS  PubMed  Google Scholar 

  45. Anderson SM, Siegman SN, Segura T. The effect of vascular endothelial growth factor (VEGF) presentation within fibrin matrices on endothelial cell branching. Biomaterials. 2011;32(30):7432–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mann DL, Lee RJ, Coats AJS, Neagoe G, Dragomir D, Pusineri E, et al. One-year follow-up results from AUGMENT-HF: a multicentre randomized controlled clinical trial of the efficacy of left ventricular augmentation with Algisyl in the treatment of heart failure. Eur J Heart Fail. 2016;18(3):314–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Brenton Cavanagh for assistance with imaging and Matrigel® analysis.

Funding

Financial support for this project was provided by Science Foundation Ireland (SFI) under an Investigator Award grant number 13/IA/1840 and the AMCARE consortium, a European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 604531.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally Ann Cryan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Dwyer, J., Murphy, R., Dolan, E.B. et al. Development of a nanomedicine-loaded hydrogel for sustained delivery of an angiogenic growth factor to the ischaemic myocardium. Drug Deliv. and Transl. Res. 10, 440–454 (2020). https://doi.org/10.1007/s13346-019-00684-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00684-5

Keywords

Navigation