Skip to main content
Log in

An epicardial delivery of nitroglycerine by active hydraulic ventricular support drug delivery system improves cardiac function in a rat model

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

We have used a novel active hydraulic ventricular support drug delivery system (ASD) device, which is a non-transplant surgical approach, can adhere to heart surface, and deliver the drug directly into the epicardium. This study is intended to compare the effect of administration of nitroglycerine (NTG) through ASD and intravenous injection on the ischemic injury during acute myocardial infarction (AMI). 30 male SD rats were allocated into five groups (n = 6): sham, AMI, I.V., ASD high dose (ASDH), and ASD low dose (ASDL) respectively. Ligation of the left anterior descending (LAD) coronary artery was performed to induce myocardial infarction. Electrocardiograms were monitored, and serum myoglobin (Mb) was assessed. Hemodynamics was observed on pre- and post-operation. Hematoxylin and eosin (H&E) staining was performed for histological diagnosis. In all model animals, ligation of LAD provoked ST segment elevation and Mb level augmentation. In ASDH group, Mb showed obvious decrease as compared with other treatment groups. Hemodynamic parameters showed significant improvement in ASDH and ASDL groups than the I.V. group. H&E staining showed that AMI group rats had wavy fibers and loss of transverse striations while ASD group rats had obvious improvement. Unlike the I.V. group, ASD group rats showed significant vasodilation. Therefore, delivery of NTG through ASD to the cardiomyocytes could improve the therapeutic efficacy. A novel effective route for local delivery of agents to manage AMI has been proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. White HD, Chew DP. Acute myocardial infarction. Lancet. 2008;372:570–84. https://doi.org/10.1016/S0140-6736(08)61237-4.

    Article  CAS  PubMed  Google Scholar 

  2. Sun Y. Myocardial repair/remodelling following infarction: roles of local factors. Cardiovasc Res. 2008;81:482–90. https://doi.org/10.1093/cvr/cvn333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang Y, Li C, Meng H, Guo D, Zhang Q, Lu W, et al. BYD ameliorates oxidative stress-induced myocardial apoptosis in heart failure post-acute myocardial infarction via the P38 MAPK-CRYAB signaling pathway. Front Physiol. 2018;9:505. https://doi.org/10.3389/fphys.2018.00505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aisa Z, Liao G-C, Shen X-L, Chen J, Li L, Jiang S-B. Effect of autophagy on myocardial infarction and its mechanism. Eur Rev Med Pharmacol Sci. 2017;21:3705–13.

    CAS  PubMed  Google Scholar 

  5. Rezkalla SH, Kloner RA. No-reflow phenomenon. Circulation. 2002;105:656–62. https://doi.org/10.1161/hc0502.102867.

    Article  PubMed  Google Scholar 

  6. Do HP, Ramanan V, Qi X, Barry J, Wright GA, Ghugre NR, et al. Non-contrast assessment of microvascular integrity using arterial spin labeled cardiovascular magnetic resonance in a porcine model of acute myocardial infarction. J Cardiovasc Magn Reson. 2018;20:45. https://doi.org/10.1186/s12968-018-0468-5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang X, Qin Y, Shao S, Yu Y, Zhang C, Dong H, et al. MicroRNA-214 inhibits left ventricular remodeling in an acute myocardial infarction rat model by suppressing cellular apoptosis via the phosphatase and tensin homolog (PTEN). Int Heart J. 2016;57:247–50. https://doi.org/10.1536/ihj.15-293.

    Article  CAS  PubMed  Google Scholar 

  8. Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest. 2007;117:568–75. https://doi.org/10.1172/JCI31044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Achary D, Loyaga-Rendon RY, Pamboukian SV, Tallaj JA, Holman WL, Cantor RS, et al. Ventricular assist device in acute myocardial infarction. J Am Coll Cardiol. 2016;67:1871–80. https://doi.org/10.1016/j.jacc.2016.02.025.

    Article  PubMed Central  Google Scholar 

  10. Sidhu M, Boden WE, Padala SK, Cabral K, Buschmann I. Role of short-acting nitroglycerin in the management of ischemic heart disease. Drug Des Devel Ther. 2015;9:4793. https://doi.org/10.2147/DDDT.S79116.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Abrams J. Nitroglycerin and long-acting nitrates in clinical practice. Am J Med. 1983;74:85–94.

    Article  CAS  PubMed  Google Scholar 

  12. Kones R. Recent advances in the management of chronic stable angina II. Anti-ischemic therapy, options for refractory angina, risk factor reduction, and revascularization. Vasc Health Risk Manag. 2010;6:749–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shah RV, Holmes D, Anderson M, Wang TY, Kontos MC, Wiviott SD, et al. Risk of heart failure complication during hospitalization for acute myocardial infarction in a contemporary population. Circ Hear Fail. 2012;5:693–702. https://doi.org/10.1161/CIRCHEARTFAILURE.112.968180.

    Article  Google Scholar 

  14. Schlaifer M, Rouse MJ. Scope of contemporary pharmacy practice: roles, responsibilities, and functions of pharmacists and pharmacy technicians. J Manag Care Pharm. 2010;16:507–8.

    PubMed  Google Scholar 

  15. Schiffrin EL. Oxidative stress, nitric oxide synthase, and superoxide dismutase. Hypertension. 2008;51:31–2. https://doi.org/10.1161/HYPERTENSIONAHA.107.103226.

    Article  CAS  PubMed  Google Scholar 

  16. Downey James M, Fred DH, Kirk Edward S. Effects of myocardial strains on coronary blood flow. Circ Res. 1974;34:286–92. https://doi.org/10.1161/01.RES.34.3.286.

    Article  Google Scholar 

  17. Sutton RL. The absorption of ointments. BMJ. 1908;1:1225–5. https://doi.org/10.1136/bmj.1.2473.1225.

    Article  CAS  PubMed  Google Scholar 

  18. Kumar K, Nguyen K, Waxman S, Nearing BD, Wellenius GA, Zhao SX, et al. Potent antifibrillatory effects of intrapericardial nitroglycerin in the ischemic porcine heart. J Am Coll Cardiol. 2003;41:1831–7. https://doi.org/10.1016/S0735-1097(03)00340-1.

    Article  CAS  PubMed  Google Scholar 

  19. Verrier RL, Waxman S, Lovett EG, Moreno R. Transatrial access to the normal pericardial space: a novel approach for diagnostic sampling, pericardiocentesis, and therapeutic interventions. Circulation. 1998;98:2331–3.

    Article  CAS  PubMed  Google Scholar 

  20. Wenk JF, Ge L, Zhang Z, Mojsejenko D, Potter DD, Tseng EE, et al. Biventricular finite element modeling of the Acorn CorCap Cardiac Support Device on a failing heart. Ann Thorac Surg. 2013;95:2022–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kubota Y, Miyagawa S, Fukushima S, Saito A, Watabe H, Daimon T, et al. Impact of cardiac support device combined with slow-release prostacyclin agonist in a canine ischemic cardiomyopathy model. J Thorac Cardiovasc Surg. 2014;147:1081–7.

    Article  CAS  PubMed  Google Scholar 

  22. Oliveira GH, Qattan MY, Al-Kindi S, Park SJ. Advanced heart failure therapies for patients with chemotherapy-induced cardiomyopathy. Circ Hear Fail. 2014;7:1050–8.

    Article  Google Scholar 

  23. Magovern JA. Experimental and clinical studies with the Paracor cardiac restraint device. Semin. Thorac. Cardiovasc. Surg., vol. 17, Elsevier; 2005, с 364–8.

  24. Ghanta RK, Rangaraj A, Umakanthan R, Lee L, Laurence RG, Fox JA, et al. Adjustable, physiological ventricular restraint improves left ventricular mechanics and reduces dilatation in an ovine model of chronic heart failure. Circulation. 2007;115:1201–10.

    Article  PubMed  Google Scholar 

  25. Naveed M, Mohammad IS, Xue L, Khan S, Gang W, Cao Y, et al. The promising future of ventricular restraint therapy for the management of end-stage heart failure. Biomed Pharmacother. 2018;99:25–32. https://doi.org/10.1016/j.biopha.2018.01.003.

    Article  PubMed  Google Scholar 

  26. Naveed M, Wenhua L, Gang W, Mohammad IS, Abbas M, Liao X, et al. A novel ventricular restraint device (ASD) repetitively deliver Salvia miltiorrhiza to epicardium have good curative effects in heart failure management. Biomed Pharmacother. 2017;95:701–10. https://doi.org/10.1016/j.biopha.2017.07.126.

    Article  PubMed  Google Scholar 

  27. Yasmeen S, Liao X, Khan FU, Ihsan AU, Li X, Li C, et al. A novel approach to devise the therapy for ventricular fibrillation by epicardial delivery of lidocaine using active hydraulic ventricular attaching support system: an experimental study in rats. J Biomed Mater Res Part B Appl Biomater. 2018;107:1722–31. https://doi.org/10.1002/jbm.b.34265.

    Article  CAS  PubMed  Google Scholar 

  28. Yue S, Naveed M, Gang W, Chen D, Wang Z, Yu F, et al. Cardiac support device (ASD) delivers bone marrow stem cells repetitively to epicardium has promising curative effects in advanced heart failure. Biomed Microdevices. 2018;20:40. https://doi.org/10.1007/s10544-018-0282-8.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou Xiaohui. Active hydraulic ventricular attaching support system, 2010.

    Google Scholar 

  30. Lee TH, Goldman L. Serum enzyme assays in the diagnosis of acute myocardial infarction. Recommendations based on a quantitative analysis. Ann Intern Med. 1986;105:221–33.

    Article  CAS  PubMed  Google Scholar 

  31. Takimoto Y, Aoyama T, Tanaka K, Keyamura R, Yui Y, Sasayama S. Augmented expression of neuronal nitric oxide synthase in the atria parasympathetically decreases heart rate during acute myocardial infarction in rats. Circulation. 2002;105:490–6. https://doi.org/10.1161/hc0402.102662.

    Article  CAS  PubMed  Google Scholar 

  32. Qin Y, Yu Y, Dong H, Bian X, Guo X, Dong S. MicroRNA 21 inhibits left ventricular remodeling in the early phase of rat model with ischemia-reperfusion injury by suppressing cell apoptosis. Int J Med Sci. 2012;9:413–23. https://doi.org/10.7150/ijms.4514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mehdizadeh R, Parizadeh M-R, Khooei A-R, Mehri S, Hosseinzadeh H. Cardioprotective effect of saffron extract and safranal in isoproterenol-induced myocardial infarction in Wistar rats. Iran J Basic Med Sci. 2013;16:56–63.

    PubMed  PubMed Central  Google Scholar 

  34. Folkman J, Long DM. The use of silicone rubber as a carrier for prolonged drug therapy. J Surg Res. 1964;4:139–42.

    Article  CAS  PubMed  Google Scholar 

  35. Hudson SP, Padera RF, Langer R, Kohane DS. The biocompatibility of mesoporous silicates. Biomaterials. 2008;29:4045–55. https://doi.org/10.1016/j.biomaterials.2008.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roche ET, Horvath MA, Wamala I, Alazmani A, Song S-E, Whyte W, et al. Soft robotic sleeve supports heart function. Sci Transl Med. 2017;9:eaaf3925. https://doi.org/10.1126/scitranslmed.aaf3925.

    Article  CAS  PubMed  Google Scholar 

  37. Ghanta RK, Lee LS, Umakanthan R, Laurence RG, Fox JA, Bolman RM III, et al. Real-time adjustment of ventricular restraint therapy in heart failure☆. Eur J Cardio-Thoracic Surg. 2008;34:1136–40. https://doi.org/10.1016/j.ejcts.2008.07.013.

    Article  Google Scholar 

  38. Naveed M, Wenhua L, Gang W, Mohammad IS, Abbas M, Liao X, et al. A novel ventricular restraint device (ASD) repetitively deliver Salvia miltiorrhiza to epicardium have good curative effects in heart failure management. Biomed Pharmacother. 2017;95:701–10. https://doi.org/10.1016/j.biopha.2017.07.126.

    Article  PubMed  Google Scholar 

  39. Naveed M, Han L, Jilany G, Mikrani R. Biomedicine & Pharmacotherapy Cardio-supportive devices (VRD & DCC device) and patches for advanced heart failure : a review , summary of state of the art and future directions 2018;102:41–54. https://doi.org/10.1016/j.biopha.2018.03.049.

    Article  Google Scholar 

  40. Mancini D, Colombo PC. Left ventricular assist devices. J Am Coll Cardiol. 2015;65:2542–55. https://doi.org/10.1016/j.jacc.2015.04.039.

    Article  PubMed  Google Scholar 

  41. Bøttcher M, Madsen MM, Randsbaek F, Refsgaard J, Dørup I, Sørensen K, et al. Effect of oral nitroglycerin and cold stress on myocardial perfusion in areas subtended by stenosed and nonstenosed coronary arteries. Am J Cardiol. 2002;89:1019–24. https://doi.org/10.1016/S0002-9149(02)02268-3.

    Article  PubMed  Google Scholar 

  42. Waxman S, Moreno R, Rowe KA, Verrier RL. Persistent primary coronary dilation induced by transatrial delivery of nitroglycerin into the pericardial space: a novel approach for local cardiac drug delivery. J Am Coll Cardiol. 1999;33:2073–7.

    Article  CAS  PubMed  Google Scholar 

  43. Divakaran S, Loscalzo J. The role of nitroglycerin and other nitrogen oxides in cardiovascular therapeutics. J Am Coll Cardiol. 2017;70:2393–410. https://doi.org/10.1016/j.jacc.2017.09.1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dave RH, Hale SL, Kloner RA. Hypothermic, closed circuit pericardioperfusion: a potential cardioprotective technique in acute regional ischemia. J Am Coll Cardiol. 1998;31:1667–71.

    Article  CAS  PubMed  Google Scholar 

  45. Weber M, Rau M, Madlener K, Elsaesser A, Bankovic D, Mitrovic V, et al. Diagnostic utility of new immunoassays for the cardiac markers cTnI, myoglobin and CK-MB mass. Clin Biochem. 2005;38:1027–30. https://doi.org/10.1016/j.clinbiochem.2005.07.011.

    Article  CAS  PubMed  Google Scholar 

  46. Ren J, Li C, Ma S, Wu J, Yang Y. Impact of dexmedetomidine on hemodynamics in rabbits. Acta Cir Bras. 2018;33:314–23. https://doi.org/10.1590/s0102-865020180040000003.

    Article  PubMed  Google Scholar 

  47. Settergren G. The calculation of left ventricular stroke work index. Acta Anaesthesiol Scand. 1986;30:450–2.

    Article  CAS  PubMed  Google Scholar 

  48. Hamlin RL, del Rio C. dP/dt(max)--a measure of “baroinometry”. J Pharmacol Toxicol Methods. 2012;66:63–5. https://doi.org/10.1016/j.vascn.2012.01.001.

    Article  CAS  PubMed  Google Scholar 

  49. Cubeddu RJ, Don CW, Horvath SA, Gupta PP, Cruz-Gonzalez I, Witzke C, et al. Left ventricular end-diastolic pressure as an independent predictor of outcome during balloon aortic valvuloplasty. Catheter Cardiovasc Interv. 2014;83:782–8. https://doi.org/10.1002/ccd.24410.

    Article  PubMed  Google Scholar 

  50. Mielniczuk LM, Lamas GA, Flaker GC, Mitchell G, Smith SC, Gersh BJ, et al. Left ventricular end-diastolic pressure and risk of subsequent heart failure in patients following an acute myocardial infarction. Congest Heart Fail. 2007;13:209–14.

    Article  PubMed  Google Scholar 

  51. Willerson JT, Igo SR, Yao SK, Ober JC, Macris MP, Ferguson JJ. Localized administration of sodium nitroprusside enhances its protection against platelet aggregation in stenosed and injured coronary arteries. Texas Hear Inst J. 1996;23:1–8.

    CAS  Google Scholar 

  52. Narita T, Shintani Y, Ikebe C, Kaneko M, Campbell NG, Coppen SR, et al. The use of scaffold-free cell sheet technique to refine mesenchymal stromal cell-based therapy for heart failure. Mol Ther. 2013;21:860–7. https://doi.org/10.1038/mt.2013.9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Found for Fostering Talents of Basic Science (NFFTBS), [grant number J1030830], the National Natural Science Foundation of China [grant numbers 30973003; 30901993], and the Administration of TCM of Jiangsu Province [grant number LZ11093].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xue Li and Reyaj Mikrani are co-first authors

Lei Han, Zhijie Wang and Xiaohui Zhou are co-corresponding authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Mikrani, R., Li, C. et al. An epicardial delivery of nitroglycerine by active hydraulic ventricular support drug delivery system improves cardiac function in a rat model. Drug Deliv. and Transl. Res. 10, 23–33 (2020). https://doi.org/10.1007/s13346-019-00656-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00656-9

Keywords

Navigation