Skip to main content

Advertisement

Log in

Transferrin-functionalised microemulsion co-delivery of β-elemene and celastrol for enhanced anti-lung cancer treatment and reduced systemic toxicity

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In this study, we developed an intravenously injectable, transferrin-functionalised microemulsion that simultaneously carries β-elemene and celastrol (called Tf-EC-MEs) for enhanced anti-lung cancer treatment and reduced systemic toxicity. These dual-drug-loaded Tf-EC-MEs not only displayed synergistic antiproliferative effects on cultured cells in vitro, but also showed enhanced efficacy in vivo via active tumour targeting. In preparatory experiments, we found that β-elemene was capable of being used as oil phase, which enhanced drug-loading efficiency and allowed the mass ratio of β-elemene and celastrol to be optimised. In cellular studies, Tf-EC-MEs exhibited significantly improved A549 cellular uptake compared with β-elemene+celastrol (conventional combination treatment) and EC-MEs (non-active targeted treatment), demonstrating remarkable synergistic antiproliferative effects and higher rates of cell apoptosis. In A549-bearing xenograft mouse tumour models, Tf-EC-MEs exhibited enhanced antitumour activity compared to all other treatments. More importantly, Tf-EC-MEs did not cause the obvious systemic toxicity commonly found with mono-celastrol treatment. Collectively, these findings suggest that Tf-EC-MEs are a promising strategy for the combination drug treatment of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hong QY, Wu GM, Qian GS, Hu CP, Zhou JY, Chen LA, et al. Prevention and management of lung cancer in China. Cancer. 2015;121:3080–8.

    Article  PubMed  Google Scholar 

  2. Fang JY, Dong HL, Wu KS, du PL, Xu ZX, Lin K. Characteristics and prediction of lung cancer mortality in China from 1991 to 2013. Asian Pac J Cancer Prev. 2015;16(14):5829–34.

    Article  PubMed  Google Scholar 

  3. Qiu B, Liang Y, Li Q, Liu GH, Wang F, Chen ZL, et al. Local therapy for oligo progressive disease in patients with advanced stage non-small-cell lung cancer harboring epidermal growth factor receptor mutation. Clin Lung Cancer. 2017;18(6):e369–73.

    Article  CAS  PubMed  Google Scholar 

  4. Vici P, Fabi A, Metro G, Sergi D, Giannarelli D, di Lauro L, et al. Phase I-II trial of prolonged gemcitabine infusion plus paclitaxel as a biweekly schedule for advanced breast cancer patients pretreated with anthracyclines. Cancer Chemother Pharmacol. 2011;67(3):687–93.

    Article  CAS  PubMed  Google Scholar 

  5. Bos AC, van Erning FN, van Gestel YR, et al. Timing of adjuvant chemotherapy and its relation to survival among patients with stage III colon cancer. Eur J Cancer. 2015;51(17):2553–61.

    Article  CAS  PubMed  Google Scholar 

  6. Wendelburg KM, Price LL, Burgess KE, Lyons JA, Lew FH, Berg J. Survival time of dogs with splenic hemangiosarcoma treated by splenectomy with or without adjuvant chemotherapy: 208 cases (2001-2012). J Am Vet Med Assoc. 2015;247(4):393–403.

    Article  PubMed  Google Scholar 

  7. Ahmed AF, Al-Qahtani JH, Al-Yousef HM, et al. Proanthocyanidin-rich date seed extract protects against chemically induced hepatorenal toxicity. J Med Food. 2015;18(3):280–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Taylor E, Jones M, Hourigan MJ, Johnson DW, Gill DS, Isbel N, et al. Cessation of immunosuppression during chemotherapy for post-transplant lymphoproliferative disorders in renal transplant patients. Nephrol Dial Transplant. 2015;30(10):1774–9.

    Article  CAS  PubMed  Google Scholar 

  9. Burotto M, Manasanch EE, Wilkerson J, Fojo T. Gefitinib and erlotinib in metastatic non-small cell lung cancer: a meta-analysis of toxicity and efficacy of randomized clinical trials. Oncologist. 2015;20(4):400–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Perez CA, Song H, Raez LE, Agulnik M, Grushko TA, Dekker A, et al. Phase II study of gefitinib adaptive dose escalation to skin toxicity in recurrent or metastatic squamous cell carcinoma of the head and neck. Oral Oncol. 2012;48(9):887–92.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao L, Yang G, Shi Y, Su C, Chang J. Co-delivery of Gefitinib and chloroquine by chitosan nanoparticles for overcoming the drug acquired resistance. J Nanobiotechnology. 2015;13:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang H, Zhu W, Liu J, Dong Z, Liu Z. pH-responsive nanoscale covalent organic polymers as a biodegradable drug carrier for combined photodynamic chemotherapy of cancer. ACS Appl Mater Interfaces. 2018;10(17):14475–82.

    Article  CAS  PubMed  Google Scholar 

  13. Kang X, Zheng Z, Liu Z, Wang H, Zhao Y, Zhang W, et al. Liposomal codelivery of doxorubicin and andrographolide inhibits breast cancer growth and metastasis. Mol Pharm. 2018;15(4):1618–26.

    Article  CAS  PubMed  Google Scholar 

  14. Lavik E, von Recum H. The role of nanomaterials in translational medicine. ACS Nano. 2011;5(5):3419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kabary DM, Helmy MW, Elkhodairy KA, Fang JY, Elzoghby AO. Hyaluronate/lactoferrin layer-by-layer-coated lipid nanocarriers for targeted co-delivery of rapamycin and berberine to lung carcinoma. Colloids Surf B Biointerfaces. 2018;169:183–94.

    Article  CAS  PubMed  Google Scholar 

  16. Qu D, Liu M, Huang M, Wang L, Chen Y, Liu C, et al. Octanoyl galactose ester-modified microemulsion system self-assembled by coix seed components to enhance tumor targeting and hepatoma therapy. Int J Nanomedicine. 2017;12:2045–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li J, JunYu, Liu A, et al. β-Elemene against human lung cancer via up-regulation of P53 protein expression to promote the release of exosome. Lung Cancer. 2014;86(2):144–50.

    Article  PubMed  Google Scholar 

  18. Liu Y, Jiang ZY, Zhou YL, Qiu HH, Wang G, Luo Y, et al. β-Elemene regulates endoplasmic reticulum stress to induce the apoptosis of NSCLC cells through PERK/IRE1α/ATF6 pathway. Biomed Pharmacother. 2017;93:490–7.

    Article  CAS  PubMed  Google Scholar 

  19. Hu CJ, Zhao XL, Li JZ, Kang SM, Yang CR, Jin YH, et al. Preparation and characterization of β-elemene-loaded microemulsion. Drug Dev Ind Pharm. 2011;37(7):765–74.

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Deng Y, Mao S, Jin S, Wang J, Bi D. Characterization and body distribution of beta-elemene solid lipid nanoparticles (SLN). Drug Dev Ind Pharm. 2005;31(8):769–78.

    Article  CAS  PubMed  Google Scholar 

  21. Corson TW, Crews CM. Molecular understanding and modern application of traditional medicines: triumphs and trials. Cell. 2007;130:769–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu L, Shi W, Deshmukh RR, Long J, Cheng X, Ji W, et al. Tumor necrosis factor-α sensitizes breast cancer cells to natural products with proteasome-inhibitory activity leading to apoptosis. PLoS One. 2014;9(11):e113783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu M, Luo Q, Alitongbieke G, Chong S, Xu C, Xie L, et al. Celastrol-induced Nur77 interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy. Mol Cell. 2017;66(1):141–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu SW, Law BY, Mok SW, et al. Autophagic degradation of epidermal growth factor receptor in gefitinib-resistant lung cancer by celastrol. Int J Oncol. 2016;49(4):1576–88.

    Article  CAS  PubMed  Google Scholar 

  25. Shah MA, Zhang X, Rossin R, Robillard MS, Fisher DR, Bueltmann T, et al. Metal-free cycloaddition chemistry driven pretargeted radioimmunotherapy using α-particle radiation. Bioconjug Chem. 2017;28(12):3007–15.

    Article  CAS  PubMed  Google Scholar 

  26. Qu D, He J, Liu C, Zhou J, Chen Y. Triterpene-loaded microemulsion using Coix lacryma-jobi seed extract as oil phase for enhanced antitumor efficacy: preparation and in vivo evaluation. Int J Nanomedicine. 2014;9:109–19.

    PubMed  Google Scholar 

  27. Li D, Liang Y, Lai Y, Wang G, He B, Gu Z. Polymeric micelles with small lipophilic moieties for drug delivery. Colloids Surf B Biointerfaces. 2014;116:627–32.

    Article  CAS  PubMed  Google Scholar 

  28. Ding B, Wahid MA, Wang Z, Xie C, Thakkar A, Prabhu S, et al. Triptolide and celastrol loaded silk fibroin nanoparticles show synergistic effect against human pancreatic cancer cells. Nanoscale. 2017;9(32):11739–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang FQ, Wang YT, Li SP. Simultaneous determination of 11 characteristic components in three species of Curcuma rhizomes using pressurized liquid extraction and high-performance liquid chromatography. J Chromatogr A. 2006;1134(1–2):226–31.

    Article  CAS  PubMed  Google Scholar 

  30. Nielsen PS, Bentzer NK, Jensen V, Steiniche T, Jylling AMB. Immunohistochemical Ki-67/KL1 double stains increase accuracy of Ki-67 indices in breast cancer and simplify automated image analysis. Appl Immunohistochem Mol Morphol. 2014;22(8):568–76.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu H, Chen H, Zeng X, Wang Z, Zhang X, Wu Y, et al. Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials. 2014;35(7):2391–400.

    Article  CAS  PubMed  Google Scholar 

  32. McDonagh BH, Volden S, Lystvet SM, et al. Self-assembly and characterization of transferrin-gold nanoconstructs and their interaction with bio-interfaces. Nanoscale. 2015;7(17):8062–70.

    Article  CAS  PubMed  Google Scholar 

  33. Sreekanth V, Medatwal N, Kumar S, Pal S, Vamshikrishna M, Kar A, et al. Tethering of chemotherapeutic drug/imaging agent to bile acid-phospholipid increases the efficacy and bioavailability with reduced hepatotoxicity. Bioconjug Chem. 2017;28(12):2942–53.

    Article  CAS  PubMed  Google Scholar 

  34. Wang F, Chen L, Zhang R, Chen Z, Zhu L. RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer. J Control Release. 2014;196:222–33.

    Article  CAS  PubMed  Google Scholar 

  35. Qu D, Wang L, Qin Y, Guo M, Guo J, Huang M, et al. Non-triggered sequential-release liposomes enhance anti-breast cancer efficacy of STS and celastrol-based microemulsion. Biomater Sci. 2018;6(12):3284–99.

    Article  CAS  PubMed  Google Scholar 

  36. Ho WS, Wang H, Maggio D, Kovach JS, Zhang Q, Song Q, et al. Pharmacologic inhibition of protein phosphatase-2A achieves durable immune-mediated antitumor activity when combined with PD-1 blockade. Nat Commun. 2018;9(1):2126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abdelaziz HA, Shaker ME, Hamed MF, Gameil NM. Repression of acetaminophen-induced hepatotoxicity by a combination of celastrol and brilliant blue G. Toxicol Lett. 2017;275:6–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81672423).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiufeng Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Tian, X. & Cao, X. Transferrin-functionalised microemulsion co-delivery of β-elemene and celastrol for enhanced anti-lung cancer treatment and reduced systemic toxicity. Drug Deliv. and Transl. Res. 9, 667–678 (2019). https://doi.org/10.1007/s13346-019-00623-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00623-4

Keywords

Navigation