Loratadine self-microemulsifying drug delivery systems (SMEDDS) in combination with sulforaphane for the synergistic chemoprevention of pancreatic cancer


Pancreatic cancer (PC), currently the third leading cause of cancer-related deaths in the USA, is projected to become the second leading cause, behind lung cancer, by 2020. The increasing incidence, low survival rate, and limited treatment opportunities necessitate the use of alternative approaches such as chemoprevention, to tackle PC. In this study, we report significant synergistic chemoprevention efficacy for the first time from a low-dose combination of a classical antihistaminic drug, Loratadine (LOR) and a neutraceutical compound, Sulforaphane (SFN) using a self-microemulsifying drug delivery system (SMEDDS) formulation. The formulation was developed using Quality by Design approach (globule size, 95.13 ± 7.9 nm; PDI, 0.17 ± 0.04) and revealed significant (p < 0.05) enhancement in the in vitro dissolution profile confirming the enhanced solubility of BCS class II drug LOR with SMEDDS formulation. The LOR-SFN combination revealed ~ 40-fold reduction in IC50 concentration compared to LOR alone in MIA PaCa-2 and Panc-1 cell lines respectively, confirming the synergistic enhancement in chemoprevention. Further, the nanoformulation resulted in ~ 7-fold and ~ 11-fold reduction in IC50 values compared to LOR-SFN combination. Hence, our studies successfully demonstrate that a unique low-dose combination of LOR encapsulated within SMEDDs with SFN shows significantly enhanced chemopreventive efficacy of PC.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  Google Scholar 

  3. 3.

    Desai PA, D, Wang, J., Prabhu, S.. Pancreatic cancer: recent advances in nano-formulation based therapies. Critical Reviews™ in therapeutic drug carrier systems. 2018;Forthcoming Article.

  4. 4.

    Miller MS, Allen P, Brentnall TA, Goggins M, Hruban RH, Petersen GM, et al. Pancreatic cancer chemoprevention translational workshop: meeting report. Pancreas. 2016;45(8):1080–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Stan SD, Singh SV, Brand RE. Chemoprevention strategies for pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2010;7(6):347–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Patterson SL, Colbert Maresso K, Hawk E. Cancer chemoprevention: successes and failures. Clin Chem. 2013;59(1):94–101.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Sutaria D, Grandhi BK, Thakkar A, Wang J, Prabhu S. Chemoprevention of pancreatic cancer using solid-lipid nanoparticulate delivery of a novel aspirin, curcumin and sulforaphane drug combination regimen. Int J Oncol. 2012;41(6):2260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Thakkar A, Chenreddy S, Wang J, Prabhu S. Ferulic acid combined with aspirin demonstrates chemopreventive potential towards pancreatic cancer when delivered using chitosan-coated solid-lipid nanoparticles. Cell Biosci. 2015;5:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Ellegaard AM, Dehlendorff C, Vind AC, Anand A, Cederkvist L, Petersen NHT, et al. Repurposing cationic amphiphilic antihistamines for cancer treatment. EBioMedicine. 2016;9:130–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Kirshner JJ, McDonald MC 3rd, Kruter F, Guinigundo AS, Vanni L, Maxwell CL, et al. NOLAN: a randomized, phase 2 study to estimate the effect of prophylactic naproxen or loratadine vs no prophylactic treatment on bone pain in patients with early-stage breast cancer receiving chemotherapy and pegfilgrastim. Support Care Cancer. 2018;26(4):1323–34.

    Article  PubMed  Google Scholar 

  11. 11.

    Soule BP, Simone NL, DeGraff WG, Choudhuri R, Cook JA, Mitchell JB. Loratadine dysregulates cell cycle progression and enhances the effect of radiation in human tumor cell lines. Radiat Oncol. 2010;5:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Bertl E, Bartsch H, Gerhauser C. Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention. Mol Cancer Ther. 2006;5(3):575–85.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Liu P, Atkinson SJ, Akbareian SE, Zhou Z, Munsterberg A, Robinson SD, et al. Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3/HIF-1alpha/VEGF signalling. Sci Rep. 2017;7(1):12651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Russo M, Spagnuolo C, Russo GL, Skalicka-Wozniak K, Daglia M, Sobarzo-Sanchez E, et al. Nrf2 targeting by sulforaphane: a potential therapy for cancer treatment. Crit Rev Food Sci Nutr. 2018;58(8):1391–405.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Kamal MM, Nazzal S. Novel sulforaphane-enabled self-microemulsifying delivery systems (SFN-SMEDDS) of taxanes: formulation development and in vitro cytotoxicity against breast cancer cells. Int J Pharm. 2018;536(1):187–98.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Hanlon N, Coldham N, Gielbert A, Kuhnert N, Sauer MJ, King LJ, et al. Absolute bioavailability and dose-dependent pharmacokinetic behaviour of dietary doses of the chemopreventive isothiocyanate sulforaphane in rat. Br J Nutr. 2008;99(3):559–64.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Khan MZ, Rausl D, Zanoski R, Zidar S, Mikulcic JH, Krizmanic L, et al. Classification of loratadine based on the biopharmaceutics drug classification concept and possible in vitro-in vivo correlation. Biol Pharm Bull. 2004;27(10):1630–5.

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Gautschi N, Bergstrom CA, Kuentz M. Rapid determination of drug solubilization versus supersaturation in natural and digested lipids. Int J Pharm. 2016;513(1–2):164–74.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Huang R, Tan Y, Shen L, Wang T, Quan D. A novel surfactant-free lipid-based formulation for improving oral bioavailability of loratadine using colloidal silicon dioxide as emulsifier and solid carrier. Curr Pharm Biotechnol. 2018;19(3):217–23.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Stillhart C, Durr D, Kuentz M. Toward an improved understanding of the precipitation behavior of weakly basic drugs from oral lipid-based formulations. J Pharm Sci. 2014;103(4):1194–203.

    Article  CAS  Google Scholar 

  21. 21.

    Üner M, Karaman E. Preliminary studies on solid lipid microparticles of loratadine for the treatment of allergic reactions via the nasal route. Trop J Pharm Res. 2013;12(3):287–93.

    Google Scholar 

  22. 22.

    Desai PD, A.; Patravale V. Overcoming poor oral bioavailability using nanoparticle formulations - opportunities and limitations. Drug Discov Today Technol. 2012;9(2):e71–e174.

    Article  CAS  Google Scholar 

  23. 23.

    Dasgupta S, Mazumder B, Ghosh SK, Kaurav SS. Solid lipid nanoparticles (SLNs) for topical delivery of aceclofenac by using xanthan gum: ex vivo and in vivo evaluation. Curr Drug Deliv. 2012.

  24. 24.

    Berton-Carabin CR, MH, Genot, C. Lipid oxidation in oil-in-water emulsions: involvement of the interfacial layer. Comprehensive Reviews in Food Science and Food Safety. 2014;13(5).

  25. 25.

    Mahdi ES, Sakeena MH, Abdulkarim MF, Abdullah GZ, Sattar MA, Noor AM. Effect of surfactant and surfactant blends on pseudoternary phase diagram behavior of newly synthesized palm kernel oil esters. Drug Des Devel Ther. 2011;5:311–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    McClements DJ. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter. 2012;8(6):1719–29.

    Article  CAS  Google Scholar 

  27. 27.

    Mehta SK, Kaur G. Microemulsions: thermodynamic and dynamic properties. Thermodynamics: INTECH Open Access Publisher; 2011. p. 381–406.

    Google Scholar 

  28. 28.

    Nobel A. Performance blends for emulsification: Akzo Nobel surface chemistry LLC; 2009 [cited 2018 June 15]. Available from: http://www.sc.akzonobel.com/en/agriculture/Documents/Letter_size/AkzoNobel_tb_71_Agro_Emulsion_Performance_Blends.pdf.

  29. 29.

    Beugin S, Edwards K, Karlsson G, Ollivon M, Lesieur S. New sterically stabilized vesicles based on nonionic surfactant, cholesterol, and poly(ethylene glycol)-cholesterol conjugates. Biophys J. 1998;74(6):3198–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Stalidis G, Avranas A, Jannakoudakis D. Interfacial properties and stability of oil-in-water emulsions stabilized with binary mixtures of surfactants. J Colloid Interface Sci. 1990;135(2):313–24.

    Article  CAS  Google Scholar 

  31. 31.

    USFDA. Dissolution methods: USFDA; 2018 [cited 2018 June 15]. Available from: https://www.accessdata.fda.gov/scripts/cder/dissolution/dsp_getallData.cfm.

  32. 32.

    Gradiz R, Silva HC, Carvalho L, Botelho MF, Mota-Pinto A. MIA PaCa-2 and PANC-1 - pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors. Sci Rep. 2016;6:21648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Alkhatib MA-S, D.; Backer, W. Cytotoxic effect of the combination of gemcitabine and atorvastatin loaded in microemulsion on the HCT116 colon cancer cells. Int J Pharm Clin Res. 2017;9(2):146–55.

  34. 34.

    Chen YC, Chen BH. Preparation of curcuminoid microemulsions from Curcuma longa L. to enhance inhibition effects on growth of colon cancer cells HT-29. RSC Adv. 2018;8(5):2323–37.

    Article  CAS  Google Scholar 

  35. 35.

    Margulis K, Srinivasan S, Ware MJ, Summers HD, Godin B, Magdassi S. Active curcumin nanoparticles formed from a volatile microemulsion template. J Mater Chem B. 2014;2:3745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


This work was supported by the National Institutes of Health [grant num: 1R15CA182834-01].

Author information



Corresponding author

Correspondence to Sunil Prabhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Desai, P., Thakkar, A., Ann, D. et al. Loratadine self-microemulsifying drug delivery systems (SMEDDS) in combination with sulforaphane for the synergistic chemoprevention of pancreatic cancer. Drug Deliv. and Transl. Res. 9, 641–651 (2019). https://doi.org/10.1007/s13346-019-00619-0

Download citation


  • Pancreatic cancer
  • Chemoprevention
  • Loratadine
  • Sulforaphane
  • Synergism
  • Self-microemulsifying drug delivery system