Kleinebudde P. Roll compaction/dry granulation: pharmaceutical applications. Eur J Pharm Biopharm. 2004;58:317–26.
CAS
Article
Google Scholar
Guigon P, et al. Roll pressing, Handbook of powder technology. Amesterdam: Elsevier; 2007. p. 255–88.
Google Scholar
Buckton G. Intermolecular bonding forces, pharmaceutical powder compaction technology. 2nd ed. Belle Mead: CRC Press; 2012. p. 1–8.
Google Scholar
Atkins AG, Mai YW. Deformation transitions. J Mater Sci. 1986;21:1093–110.
Article
Google Scholar
Roberts RJ, Rowe RC. Brittle/ductile behaviour in pharmaceutical materials used in tabletting. Int J Pharm. 1987;36:205–9.
CAS
Article
Google Scholar
Roberts RJ, Rowe RC, Kendall K. Brittle-ductile transitions in die compaction of sodium chloride. Chem Eng Sci. 1989;44:1647–51.
CAS
Article
Google Scholar
Franks GV, Lange FF. Mechanical behavior of saturated, consolidated, alumina powder compacts: effect of particle size and morphology on the plastic-to-brittle transition. Colloids Surf A Physicochem Eng Asp. 1999;146:5–17.
CAS
Article
Google Scholar
Larsson I, Kristensen HG. Comminution of a brittle/ductile material in a micros ring mill. Powder Technol. 2000;107:175–8.
CAS
Article
Google Scholar
Holman LE. The compaction behaviour of particulate materials. An elucidation based on percolation theory. Powder Technol. 1991;66:265–80.
CAS
Article
Google Scholar
Armstrong NA. Time-dependent factors involved in powder compression and tablet manufacture. Int J Pharm. 1989;49:1–13.
Article
Google Scholar
Antikainen O, Yliruusi J. Determining the compression behaviour of pharmaceutical powders from the force–distance compression profile. Int J Pharm. 2003;252:253–61.
CAS
Article
Google Scholar
Leuenberger H. The compressibility and compactibility of powder systems. Int J Pharm. 1982;12:41–55.
CAS
Article
Google Scholar
Freitag F, Kleinebudde P. How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Comparison of four magnesium carbonates. Eur J Pharm Sci. 2003;19:281–9.
CAS
Article
Google Scholar
He X, Secreast PJ, Amidon GE. Mechanistic study of the effect of roller compaction and lubricant on tablet mechanical strength. J Pharm Sci. 2007;96:1342–55.
CAS
Article
Google Scholar
Bozic DZ, Dreu R, Vrecer F. Influence of dry granulation on compactibility and capping tendency of macrolide antibiotic formulation. Int J Pharm. 2008;357:44–54.
CAS
Article
Google Scholar
Patel S, Kaushal AM, Bansal AK. Compaction behavior of roller compacted ibuprofen. Eur J Pharm Biopharm. 2008;69:743–9.
CAS
Article
Google Scholar
Sonnergaard JM. A critical evaluation of the Heckel equation. Int J Pharm. 1999;193:63–71.
CAS
Article
Google Scholar
Askeland DR, editor. The science and engineering of materials, Third S.I ed. Cheltenham,UK: Stanely Thomas Ltd.; 1998.
Google Scholar
Fischer-Cripps AC. Nanoindentation: mechanical engineering series 1. New York: Springer Verlag; 2011.
Book
Google Scholar
Hysitron. TS 70 TriboScope®, USA, 2013.
Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20.
CAS
Article
Google Scholar
Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83.
CAS
Article
Google Scholar
D. Schulze. Discussion of testers and test procedures. Powders and bulk solids: behavior, characterization, storage and flow. 2008;–198.
Schulze D. Powders and bulk solids : behavior, characterization, storage and flow. Berlin New York: Springer; 2010.
Google Scholar
A. Jenike. Storage and flow of solids. Buletin of the University of Utah. 1964.
Sonnergaard JM. Quantification of the compactibility of pharmaceutical powders. Eur J Pharm Biopharm. 2006;63:270–7.
CAS
Article
Google Scholar
Prigge Jd, et al. Numerical investigation of stress distribution during die compaction of food powders. Part Sci Technol. 2011;29:40–52.
CAS
Article
Google Scholar
Palzer S. Influence of material properties on the agglomeration of water-soluble amorphous particles. Powder Technol. 2009;189:318–26.
CAS
Article
Google Scholar
Harirtian I, et al. Determination of mechanical strength same material double-layer rectangular tablets. DARU J Pharm Sci. 2000;8:22–7.
Google Scholar
Osborne JD, Althaus T, Forny L, Niederreiter G, Palzer S, Hounslow MJ, et al. Investigating the influence of moisture content and pressure on the bonding mechanisms during roller compaction of an amorphous material. Chem Eng Sci. 2013;86:61–9.
CAS
Article
Google Scholar
Rumpf H. Baisc principles and method of granulation Che. Eng Tech. 1958;30:144.
CAS
Google Scholar
M. Celik, Pharmaceutical powder compaction technology, 2nd ed./[edited by] Metin ßelik. ed., Informa Healthcare, 2011, London, 2011.
Rubinstein MH. Tablets. In: Aulton ME, editor. Pharmaceutics:the science of dosage form design. Edinburgh: Churchill Livingstone; 1988. p. 304–21.
Google Scholar
B. Michel. Compactage en presse a rouleaux de poudres minerales. Universite de Compiegne. 1994.
Cunningham JC, Winstead D, Zavaliangos A. Understanding variation in roller compaction through finite element-based process modeling. Comput Chem Eng. 2010;34:1058–71.
CAS
Article
Google Scholar
Miguélez-Morán AM, Wu CY, Dong H, Seville JPK. Characterisation of density distributions in roller-compacted ribbons using micro-indentation and X-ray micro-computed tomography. Eur J Pharm Biopharm. 2009;72:173–82.
Article
Google Scholar
S. Yu. Roll compaction of parmaceutical excpients. Birmingham: School of Chemical Engineering, The University of Birmingham; 2012, pp. 227.
Inghelbrecht S, Remon JP. Reducing dust and improving granule and tablet quality in the roller compaction process. Int J Pharm. 1998;171:195–206.
CAS
Article
Google Scholar
Miguélez-Morán AM, Wu CY, Seville JPK. The effect of lubrication on density distributions of roller compacted ribbons. Int J Pharm. 2008;362:52–9.
Article
Google Scholar
Lim H, Dave VS, Kidder L, Neil Lewis E, Fahmy R, Hoag SW. Assessment of the critical factors affecting the porosity of roller compacted ribbons and the feasibility of using NIR chemical imaging to evaluate the porosity distribution. Int J Pharm. 2011;410:1–8.
CAS
Article
Google Scholar
Muliadi AR, Litster JD, Wassgren CR. Validation of 3-D finite element analysis for predicting the density distribution of roll compacted pharmaceutical powder. Powder Technol. 2013;237:386–99.
CAS
Article
Google Scholar
Parrott EL. Densification of powders by concavo-convex roller compactor. J Pharm Sci. 1981;70:288–91.
CAS
Article
Google Scholar
Rue PJ, REES JE. Limitations of Heckel relation for predicting powder compaction mechanisms. J Pharm Pharmacol. 1978;30:642–3.
CAS
Article
Google Scholar
Palzer S. Agglomeration of pharmaceutical, detergent, chemical and food powders—similarities and differences of materials and processes. Powder Technol. 2011;206:2–17.
CAS
Article
Google Scholar
Chang C, et al. Roller compaction, granulation and capsule product dissolution of drug formulations containing a lactose or mannitol filler, starch, and talc. AAPS PharmSciTech. 2008;9:597–604.
CAS
Article
Google Scholar
A. Karimi, M. Navidbakhsh, A.M. Haghi. An experimental study on the structural and mechanical properties of polyvinyl alcohol sponge using different stress–strain definitions. Adv Polym Technol. 2014;33.
Wang Y, et al. Tensile behaviour and strength distribution of polyvinyl-alcohol fibre at high strain rates. Appl Compos Mater. 2001;8:297–306.
CAS
Article
Google Scholar
Heiman J, Tajarobi F, Gururajan B, Juppo A, Abrahmsén-Alami S. Roller compaction of hydrophilic extended release tablets—combined effects of processing variables and drug/matrix former particle size. AAPS PharmSciTech. 2015;16:267–77.
CAS
Article
Google Scholar
Wu CY, Hung WL, Miguélez-Morán AM, Gururajan B, Seville JPK. Roller compaction of moist pharmaceutical powders. Int J Pharm. 2010;391:90–7.
CAS
Article
Google Scholar