Skip to main content

Roller compaction: the effect of plastic deformation of primary particles with wide range of mechanical properties

Abstract

Understanding the compaction behaviour of the primary powder in the roller compaction process is necessary to be able to better control the quality of the product. In this study, the plastic deformation of the primary particles was evaluated by determining two mechanical properties: the nano-indentation hardness and the viscoelasticity of the primary powder. The nano-indentation hardness of eight different materials with a wide range of mechanical properties was determined by indenting the surface of the single primary particle, whereas the viscoelasticity was evaluated for a powder bed using the creep test. These were linked to fundamental ribbon properties such as ribbon strength and width in addition to the amount of fines. It was identified that the plastic deformation of the material had the potential to provide an indication for the ability of the primary powder to produce a good ribbon. For the range of the investigated process parameters, the optimum hardness range that produced ribbons with ideal properties and small amount of fines was suggested.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Kleinebudde P. Roll compaction/dry granulation: pharmaceutical applications. Eur J Pharm Biopharm. 2004;58:317–26.

    CAS  Article  Google Scholar 

  2. Guigon P, et al. Roll pressing, Handbook of powder technology. Amesterdam: Elsevier; 2007. p. 255–88.

    Google Scholar 

  3. Buckton G. Intermolecular bonding forces, pharmaceutical powder compaction technology. 2nd ed. Belle Mead: CRC Press; 2012. p. 1–8.

    Google Scholar 

  4. Atkins AG, Mai YW. Deformation transitions. J Mater Sci. 1986;21:1093–110.

    Article  Google Scholar 

  5. Roberts RJ, Rowe RC. Brittle/ductile behaviour in pharmaceutical materials used in tabletting. Int J Pharm. 1987;36:205–9.

    CAS  Article  Google Scholar 

  6. Roberts RJ, Rowe RC, Kendall K. Brittle-ductile transitions in die compaction of sodium chloride. Chem Eng Sci. 1989;44:1647–51.

    CAS  Article  Google Scholar 

  7. Franks GV, Lange FF. Mechanical behavior of saturated, consolidated, alumina powder compacts: effect of particle size and morphology on the plastic-to-brittle transition. Colloids Surf A Physicochem Eng Asp. 1999;146:5–17.

    CAS  Article  Google Scholar 

  8. Larsson I, Kristensen HG. Comminution of a brittle/ductile material in a micros ring mill. Powder Technol. 2000;107:175–8.

    CAS  Article  Google Scholar 

  9. Holman LE. The compaction behaviour of particulate materials. An elucidation based on percolation theory. Powder Technol. 1991;66:265–80.

    CAS  Article  Google Scholar 

  10. Armstrong NA. Time-dependent factors involved in powder compression and tablet manufacture. Int J Pharm. 1989;49:1–13.

    Article  Google Scholar 

  11. Antikainen O, Yliruusi J. Determining the compression behaviour of pharmaceutical powders from the force–distance compression profile. Int J Pharm. 2003;252:253–61.

    CAS  Article  Google Scholar 

  12. Leuenberger H. The compressibility and compactibility of powder systems. Int J Pharm. 1982;12:41–55.

    CAS  Article  Google Scholar 

  13. Freitag F, Kleinebudde P. How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Comparison of four magnesium carbonates. Eur J Pharm Sci. 2003;19:281–9.

    CAS  Article  Google Scholar 

  14. He X, Secreast PJ, Amidon GE. Mechanistic study of the effect of roller compaction and lubricant on tablet mechanical strength. J Pharm Sci. 2007;96:1342–55.

    CAS  Article  Google Scholar 

  15. Bozic DZ, Dreu R, Vrecer F. Influence of dry granulation on compactibility and capping tendency of macrolide antibiotic formulation. Int J Pharm. 2008;357:44–54.

    CAS  Article  Google Scholar 

  16. Patel S, Kaushal AM, Bansal AK. Compaction behavior of roller compacted ibuprofen. Eur J Pharm Biopharm. 2008;69:743–9.

    CAS  Article  Google Scholar 

  17. Sonnergaard JM. A critical evaluation of the Heckel equation. Int J Pharm. 1999;193:63–71.

    CAS  Article  Google Scholar 

  18. Askeland DR, editor. The science and engineering of materials, Third S.I ed. Cheltenham,UK: Stanely Thomas Ltd.; 1998.

    Google Scholar 

  19. Fischer-Cripps AC. Nanoindentation: mechanical engineering series 1. New York: Springer Verlag; 2011.

    Book  Google Scholar 

  20. Hysitron. TS 70 TriboScope®, USA, 2013.

  21. Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20.

    CAS  Article  Google Scholar 

  22. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83.

    CAS  Article  Google Scholar 

  23. D. Schulze. Discussion of testers and test procedures. Powders and bulk solids: behavior, characterization, storage and flow. 2008;–198.

  24. Schulze D. Powders and bulk solids : behavior, characterization, storage and flow. Berlin New York: Springer; 2010.

    Google Scholar 

  25. A. Jenike. Storage and flow of solids. Buletin of the University of Utah. 1964.

  26. Sonnergaard JM. Quantification of the compactibility of pharmaceutical powders. Eur J Pharm Biopharm. 2006;63:270–7.

    CAS  Article  Google Scholar 

  27. Prigge Jd, et al. Numerical investigation of stress distribution during die compaction of food powders. Part Sci Technol. 2011;29:40–52.

    CAS  Article  Google Scholar 

  28. Palzer S. Influence of material properties on the agglomeration of water-soluble amorphous particles. Powder Technol. 2009;189:318–26.

    CAS  Article  Google Scholar 

  29. Harirtian I, et al. Determination of mechanical strength same material double-layer rectangular tablets. DARU J Pharm Sci. 2000;8:22–7.

    Google Scholar 

  30. Osborne JD, Althaus T, Forny L, Niederreiter G, Palzer S, Hounslow MJ, et al. Investigating the influence of moisture content and pressure on the bonding mechanisms during roller compaction of an amorphous material. Chem Eng Sci. 2013;86:61–9.

    CAS  Article  Google Scholar 

  31. Rumpf H. Baisc principles and method of granulation Che. Eng Tech. 1958;30:144.

    CAS  Google Scholar 

  32. M. Celik, Pharmaceutical powder compaction technology, 2nd ed./[edited by] Metin ßelik. ed., Informa Healthcare, 2011, London, 2011.

  33. Rubinstein MH. Tablets. In: Aulton ME, editor. Pharmaceutics:the science of dosage form design. Edinburgh: Churchill Livingstone; 1988. p. 304–21.

    Google Scholar 

  34. B. Michel. Compactage en presse a rouleaux de poudres minerales. Universite de Compiegne. 1994.

  35. Cunningham JC, Winstead D, Zavaliangos A. Understanding variation in roller compaction through finite element-based process modeling. Comput Chem Eng. 2010;34:1058–71.

    CAS  Article  Google Scholar 

  36. Miguélez-Morán AM, Wu CY, Dong H, Seville JPK. Characterisation of density distributions in roller-compacted ribbons using micro-indentation and X-ray micro-computed tomography. Eur J Pharm Biopharm. 2009;72:173–82.

    Article  Google Scholar 

  37. S. Yu. Roll compaction of parmaceutical excpients. Birmingham: School of Chemical Engineering, The University of Birmingham; 2012, pp. 227.

  38. Inghelbrecht S, Remon JP. Reducing dust and improving granule and tablet quality in the roller compaction process. Int J Pharm. 1998;171:195–206.

    CAS  Article  Google Scholar 

  39. Miguélez-Morán AM, Wu CY, Seville JPK. The effect of lubrication on density distributions of roller compacted ribbons. Int J Pharm. 2008;362:52–9.

    Article  Google Scholar 

  40. Lim H, Dave VS, Kidder L, Neil Lewis E, Fahmy R, Hoag SW. Assessment of the critical factors affecting the porosity of roller compacted ribbons and the feasibility of using NIR chemical imaging to evaluate the porosity distribution. Int J Pharm. 2011;410:1–8.

    CAS  Article  Google Scholar 

  41. Muliadi AR, Litster JD, Wassgren CR. Validation of 3-D finite element analysis for predicting the density distribution of roll compacted pharmaceutical powder. Powder Technol. 2013;237:386–99.

    CAS  Article  Google Scholar 

  42. Parrott EL. Densification of powders by concavo-convex roller compactor. J Pharm Sci. 1981;70:288–91.

    CAS  Article  Google Scholar 

  43. Rue PJ, REES JE. Limitations of Heckel relation for predicting powder compaction mechanisms. J Pharm Pharmacol. 1978;30:642–3.

    CAS  Article  Google Scholar 

  44. Palzer S. Agglomeration of pharmaceutical, detergent, chemical and food powders—similarities and differences of materials and processes. Powder Technol. 2011;206:2–17.

    CAS  Article  Google Scholar 

  45. Chang C, et al. Roller compaction, granulation and capsule product dissolution of drug formulations containing a lactose or mannitol filler, starch, and talc. AAPS PharmSciTech. 2008;9:597–604.

    CAS  Article  Google Scholar 

  46. A. Karimi, M. Navidbakhsh, A.M. Haghi. An experimental study on the structural and mechanical properties of polyvinyl alcohol sponge using different stress–strain definitions. Adv Polym Technol. 2014;33.

  47. Wang Y, et al. Tensile behaviour and strength distribution of polyvinyl-alcohol fibre at high strain rates. Appl Compos Mater. 2001;8:297–306.

    CAS  Article  Google Scholar 

  48. Heiman J, Tajarobi F, Gururajan B, Juppo A, Abrahmsén-Alami S. Roller compaction of hydrophilic extended release tablets—combined effects of processing variables and drug/matrix former particle size. AAPS PharmSciTech. 2015;16:267–77.

    CAS  Article  Google Scholar 

  49. Wu CY, Hung WL, Miguélez-Morán AM, Gururajan B, Seville JPK. Roller compaction of moist pharmaceutical powders. Int J Pharm. 2010;391:90–7.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riyadh B. Al Asady.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al Asady, R.B., Hounslow, M.J. & Salman, A.D. Roller compaction: the effect of plastic deformation of primary particles with wide range of mechanical properties. Drug Deliv. and Transl. Res. 8, 1615–1634 (2018). https://doi.org/10.1007/s13346-018-0555-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-018-0555-z

Keywords

  • Roller compaction
  • Plastic deformation
  • Nano-indentation hardness
  • Viscoelasticity
  • Creep test