Skip to main content

Advertisement

Log in

Corneal chemical burn treatment through a delivery system consisting of TGF-β1 siRNA: in vitro and in vivo

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Chemical burns are major causes of corneal blindness. Transforming growth factor beta-1 (TGFβ1) plays an important role in induction of corneal inflammation-related-fibrosis leading to the blindness. Here, a topical delivery system consisting anti-fibrotic TGF-β1 siRNA, an inflammatory suppressing gene, was designed for treatment of corneal injuries. TGF-β1 siRNA loaded in nanoparticles (NPs) made up of polyethyleneimine polymer demonstrated high fibroblast transfection efficiency. Moreover, TGF-β1 and PDGF genes and ECM deposition were suppressed in isolated human corneal fibroblasts. NPs inhibited proliferation and transformation of fibroblasts to myofibroblasts by S-phase arrest and α-SMA suppression in vitro, respectively. The mentioned finding was also confirmed in vivo, addressing high wound-healing potential of prepared gene delivery system which was superior to conventional betamethasone treatment. Besides, CD4+ and α-SMA antibody staining showed inhibited angiogenesis and myofibroblast accumulation in treated corneas. This study opens a new way for treating corneal fibrosis through topical siRNA delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Fish R, Davidson RS. Management of ocular thermal and chemical injuries, including amniotic membrane therapy. Curr Opin Ophthalmol. 2010;21(4):317–21.

    PubMed  Google Scholar 

  2. Mead MD, Colby KA. Evaluation and initial management of patients with ocular and adnexal trauma. Principles and practice of ophthalmology. Philadelphia: WB Saunders; 1994. p. 3361–82.

    Google Scholar 

  3. Igarashi J, Fukuda N, Inoue T, Nakai S, Saito K, Fujiwara K, et al. Preclinical study of novel gene silencer pyrrole-imidazole polyamide targeting human TGF-β1 promoter for hypertrophic scars in a common marmoset primate model. PLoS One. 2015;10(5):e0125295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Singh V, Torricelli AA, Nayeb-Hashemi N, Agrawal V, Wilson SE. Mouse strain variation in SMA+ myofibroblast development after corneal injury. Exp Eye Res. 2013;115:27–30.

    Article  PubMed  CAS  Google Scholar 

  5. Wilson SE. Corneal myofibroblast biology and pathobiology: generation, persistence, and transparency. Exp Eye Res. 2012;99:78–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Singh V, Jaini R, Torricelli AA, Santhiago MR, Singh N, Ambati BK, et al. TGFβ and PDGF-B signaling blockade inhibits myofibroblast development from both bone marrow-derived and keratocyte-derived precursor cells in vivo. Exp Eye Res. 2014;121:35–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kane C, Cartledge J, Dias P, Camelliti P, Yacoub M, Terracciano C. 17 cardiomyocytes influence fibroblast proliferation and α-smooth muscle actin expression via the secretion of paracrine mediators. Heart. 2014;100(Suppl 1):A6–7.

    Article  Google Scholar 

  8. Jester JV, Brown D, Pappa A, Vasiliou V. Myofibroblast differentiation modulates keratocyte crystallin protein expression, concentration, and cellular light scattering. Invest Ophthalmol Vis Sci. 2012;53(2):770–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Jeon K-I, Kulkarni A, Woeller CF, Phipps RP, Sime PJ, Hindman HB, et al. Inhibitory effects of PPARγ ligands on TGF-β1-induced corneal myofibroblast transformation. Am J Pathol. 2014;184(5):1429–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bochaton-Piallat M-L, Gabbiani G, Hinz B. The myofibroblast in wound healing and fibrosis: answered and unanswered questions. F1000Research. 2016;5 https://doi.org/10.12688/f1000research.8190.1.

  11. Reneker LW, Bloch A, Xie L, Overbeek PA, Ash JD. Induction of corneal myofibroblasts by lens-derived transforming growth factor β1 (TGFβ1): a transgenic mouse model. Brain Res Bull. 2010;81(2–3):287–96.

    Article  PubMed  CAS  Google Scholar 

  12. Cheng W, Xu R, Li D, Bortolini C, He J, Dong M, et al. Artificial extracellular matrix delivers TGFb1 regulating myofibroblast differentiation. RSC Adv. 2016;6(26):21922–8.

    Article  CAS  Google Scholar 

  13. Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. Growth Factors. 2011;29(5):196–202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jaguin M, Fardel O, Lecureur V. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation. Toxicol Appl Pharmacol. 2015;285(3):170–8.

    Article  PubMed  CAS  Google Scholar 

  15. Shah R, Reyes-Gordillo K, Arellanes-Robledo J, Lechuga CG, Hernández-Nazara Z, Cotty A, et al. TGF-β1 up-regulates the expression of PDGF-β receptor mRNA and induces a delayed PI3K-, AKT-, and p70S6K-dependent proliferative response in activated hepatic stellate cells. Alcohol Clin Exp Res. 2013;37(11):1838–48.

    Article  PubMed  CAS  Google Scholar 

  16. Maguire MG, Stark WJ, Gottsch JD, Stulting RD, Sugar A, Fink NE, et al. Risk factors for corneal graft failure and rejection in the collaborative corneal transplantation studies. Ophthalmology. 1994;101(9):1536–47.

    Article  PubMed  CAS  Google Scholar 

  17. Ma Y, Xu Y, Xiao Z, Yang W, Zhang C, Song E, et al. Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells. 2006;24(2):315–21.

    Article  PubMed  Google Scholar 

  18. Gomes JAP, dos Santos MS, Cunha MC, de Nadai Barros J, de Sousa LB. Amniotic membrane transplantation for partial and total limbal stem cell deficiency secondary to chemical burn. Ophthalmology. 2003;110(3):466–73.

    Article  PubMed  Google Scholar 

  19. Sriram S, Gibson D, Robinson P, Tuli S, Lewin AS, Schultz G. Reduction of corneal scarring in rabbits by targeting the TGFB1 pathway with a triple siRNA combination. Adv Biosci Biotechnol. 2013;4(10):47–55.

    Article  CAS  Google Scholar 

  20. Tovey J, Gronkiewicz KM, Giuliano EA, Siddiqui S, Sharma A, Brooke JL, et al. Role of cellular kinases and Smads in the modulation of SAHA-mediated corneal fibrosis inhibition. Invest Ophthalmol Vis Sci. 2014;55(13):5147.

    Google Scholar 

  21. Chen M, Matsuda H, Wang L, Watanabe T, Kimura MT, Igarashi J, et al. Pretranscriptional regulation of TGF-β1 by PI polyamide prevents scarring and accelerates wound healing of the cornea after exposure to alkali. Mol Ther. 2010;18(3):519–27.

    Article  PubMed  CAS  Google Scholar 

  22. Zahir-Jouzdani F, Mahbod M, Soleimani M, Vakhshiteh F, Arefian E, Shahosseini S, et al. Chitosan and thiolated chitosan: novel therapeutic approach for preventing corneal haze after chemical injuries. Carbohydr Polym. 2018;179:42–9.

    Article  PubMed  CAS  Google Scholar 

  23. Montgomery MK, Xu S, Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci. 1998;95(26):15502–7.

    Article  PubMed  CAS  Google Scholar 

  24. Rand TA, Petersen S, Du F, Wang X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell. 2005;123(4):621–9.

    Article  PubMed  CAS  Google Scholar 

  25. Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28(2):172–6.

    Article  PubMed  CAS  Google Scholar 

  26. Gary DJ, Puri N, Won Y-Y. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release. 2007;121(1):64–73.

    Article  PubMed  CAS  Google Scholar 

  27. Liu X, Howard KA, Dong M, Andersen MØ, Rahbek UL, Johnsen MG, et al. The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials. 2007;28(6):1280–8.

    Article  PubMed  CAS  Google Scholar 

  28. Song WJ, Du JZ, Sun TM, Zhang PZ, Wang J. Gold nanoparticles capped with polyethyleneimine for enhanced siRNA delivery. Small. 2010;6(2):239–46.

    Article  PubMed  CAS  Google Scholar 

  29. Watanabe K, Harada-Shiba M, Suzuki A, Gokuden R, Kurihara R, Sugao Y, et al. In vivo siRNA delivery with dendritic poly (L-lysine) for the treatment of hypercholesterolemia. Mol BioSyst. 2009;5(11):1306–10.

    Article  PubMed  CAS  Google Scholar 

  30. Hughes J, Yadava P, Mesaros R. Liposomal siRNA delivery. In: Weissig V, editor. Liposomes: methods and protocols, volume 1: pharmaceutical nanocarriers; 2010. p. 445–59.

    Google Scholar 

  31. Heyes J, Palmer L, Bremner K, MacLachlan I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release. 2005;107(2):276–87.

    Article  PubMed  CAS  Google Scholar 

  32. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 2005;12(5):461–6.

    Article  PubMed  CAS  Google Scholar 

  33. Merkel OM, Beyerle A, Librizzi D, Pfestroff A, Behr TM, Sproat B, et al. Nonviral siRNA delivery to the lung: investigation of PEG− PEI polyplexes and their in vivo performance. Mol Pharm. 2009;6(4):1246–60.

    Article  PubMed  CAS  Google Scholar 

  34. Tiyaboonchai W, Woiszwillo J, Sims RC, Middaugh CR. Insulin containing polyethylenimine–dextran sulfate nanoparticles. Int J Pharm. 2003;255(1):139–51.

    Article  PubMed  CAS  Google Scholar 

  35. Shahnaz G, Perera G, Sakloetsakun D, Rahmat D, Bernkop-Schnürch A. Synthesis, characterization, mucoadhesion and biocompatibility of thiolated carboxymethyl dextran–cysteine conjugate. J Control Release. 2010;144(1):32–8.

    Article  PubMed  CAS  Google Scholar 

  36. Thakur A, Fitzpatrick S, Zaman A, Kugathasan K, Muirhead B, Hortelano G, et al. Strategies for ocular siRNA delivery: potential and limitations of non-viral nanocarriers. J Biol Eng. 2012;6(1):7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Nakamura H, Siddiqui SS, Shen X, Malik AB, Pulido JS, Kumar NM, et al. RNA interference targeting transforming growth factor-beta type II receptor suppresses ocular inflammation and fibrosis. Mol Vis. 2004;10(6):703–11.

    PubMed  CAS  Google Scholar 

  38. Sriram S, Robinson P, Pi L, Lewin AS, Schultz G. Triple combination of siRNAs targeting TGFβ1, TGFβR2, and CTGF enhances reduction of collagen I and smooth muscle actin in corneal fibroblaststriple siRNAs reduce scarring gene expression. Invest Ophthalmol Vis Sci. 2013;54(13):8214–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hosseinzadeh H, Atyabi F, Dinarvand R, Ostad SN. Chitosan-pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. Int J Nanomedicine. 2012;7(1):1851–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2001;3(10) https://doi.org/10.1002/0471142735.ima03bs21.

  41. Kahn C, Young E, Lee IH, Rhim J. Human corneal epithelial primary cultures and cell lines with extended life span: in vitro model for ocular studies. Invest Ophthalmol Vis Sci. 1993;34(12):3429–41.

    PubMed  CAS  Google Scholar 

  42. Untergasser G, Gander R, Lilg C, Lepperdinger G, Plas E, Berger P. Profiling molecular targets of TGF-β1 in prostate fibroblast-to-myofibroblast transdifferentiation. Mech Ageing Dev. 2005;126(1):59–69.

    Article  PubMed  CAS  Google Scholar 

  43. Trojanowska M. Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology. 2008;47(suppl 5):v2–4.

    Article  PubMed  CAS  Google Scholar 

  44. Netto MV, Mohan RR, Sinha S, Sharma A, Dupps W, Wilson SE. Stromal haze, myofibroblasts, and surface irregularity after PRK. Exp Eye Res. 2006;82(5):788–97.

    Article  PubMed  CAS  Google Scholar 

  45. Jester JV, Budge A, Fisher S, Huang J. Corneal keratocytes: phenotypic and species differences in abundant protein expression and in vitro light-scattering. Invest Ophthalmol Vis Sci. 2005;46(7):2369–78.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gotzmann J, Fischer A, Zojer M, Mikula M, Proell V, Huber H, et al. A crucial function of PDGF in TGF-β-mediated cancer progression of hepatocytes. Oncogene. 2006;25(22):3170–85.

    Article  PubMed  CAS  Google Scholar 

  47. Araújo F, Rocha M, Mendes J, Andrade S. Atorvastatin inhibits inflammatory angiogenesis in mice through down regulation of VEGF, TNF-α and TGF-β1. Biomed Pharmacother. 2010;64(1):29–34.

    Article  PubMed  CAS  Google Scholar 

  48. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494–8.

    Article  PubMed  CAS  Google Scholar 

  49. Rodriguez M, Lapierre J, Ojha CR, Kaushik A, Batrakova E, Kashanchi F, et al. Intranasal drug delivery of small interfering RNA targeting Beclin1 encapsulated with polyethylenimine (PEI) in mouse brain to achieve HIV attenuation. Sci Rep. 2017;7(1):1862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Grayson ACR, Doody AM, Putnam D. Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm Res. 2006;23(8):1868–76.

    Article  PubMed  CAS  Google Scholar 

  51. Kang J-H, Tachibana Y, Kamata W, Mahara A, Harada-Shiba M, Yamaoka T. Liver-targeted siRNA delivery by polyethylenimine (PEI)-pullulan carrier. Bioorg Med Chem. 2010;18(11):3946–50.

    Article  PubMed  CAS  Google Scholar 

  52. Sharma A, Rodier JT, Tandon A, Klibanov AM, Mohan RR. Attenuation of corneal myofibroblast development through nanoparticle-mediated soluble transforming growth factor-β type II receptor (sTGFβRII) gene transfer. Mol Vis. 2012;18:2598.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Li Z, Duan F, Lin L, Huang Q, Wu K. A new approach of delivering siRNA to the cornea and its application for inhibiting herpes simplex keratitis. Curr Mol Med. 2014;14(9):1215–25.

    Article  PubMed  CAS  Google Scholar 

  54. Donnelly KS, Giuliano EA, Sharma A, Tandon A, Rodier JT, Mohan RR. Decorin-PEI nanoconstruct attenuates equine corneal fibroblast differentiation. Vet Ophthalmol. 2014;17(3):162–9.

    Article  PubMed  CAS  Google Scholar 

  55. Höbel S, Koburger I, John M, Czubayko F, Hadwiger P, Vornlocher HP, et al. Polyethylenimine/small interfering RNA-mediated knockdown of vascular endothelial growth factor in vivo exerts anti-tumor effects synergistically with bevacizumab. J Gene Med. 2010;12(3):287–300.

    PubMed  Google Scholar 

  56. Werth S, Urban-Klein B, Dai L, Höbel S, Grzelinski M, Bakowsky U, et al. A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. J Control Release. 2006;112(2):257–70.

    Article  PubMed  CAS  Google Scholar 

  57. Helmschrodt C, Höbel S, Schöniger S, Bauer A, Bonicelli J, Gringmuth M, et al. Polyethylenimine nanoparticle-mediated siRNA delivery to reduce α-Synuclein expression in a model of Parkinson’s disease. Mol Therapy-Nucleic Acids. 2017;9:57–68.

    Article  CAS  Google Scholar 

  58. Wang F, Gao L, Meng L-Y, Xie J-M, Xiong J-W, Luo Y. A neutralized noncharged polyethylenimine-based system for efficient delivery of siRNA into heart without toxicity. ACS Appl Mater Interfaces. 2016;8(49):33529–38.

    Article  PubMed  CAS  Google Scholar 

  59. Patnaik S, Gupta KC. Novel polyethylenimine-derived nanoparticles for in vivo gene delivery. Expert Opin Drug Deliv. 2013;10(2):215–28.

    Article  PubMed  CAS  Google Scholar 

  60. Sriram S, Gibson DJ, Robinson P, Pi L, Tuli S, Lewin AS, et al. Assessment of anti-scarring therapies in ex vivo organ cultured rabbit corneas. Exp Eye Res. 2014;125:173–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zheng D, Song T, Zhongliu X, Wu M, Liang J, Liu Y. Downregulation of transforming growth factor-β type II receptor prohibit epithelial-to-mesenchymal transition in lens epithelium. Mol Vis. 2012;18:1238–46.

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Gallucci RM, Lee EG, Tomasek JJ. IL-6 modulates alpha-smooth muscle actin expression in dermal fibroblasts from IL-6-deficient mice. J Investig Dermatol. 2006;126(3):561–8.

    Article  PubMed  CAS  Google Scholar 

  63. Seong GJ, Hong S, Jung S-A, Lee J-J, Lim E, Kim S-J, et al. TGF-β-induced interleukin-6 participates in transdifferentiation of human Tenon’s fibroblasts to myofibroblasts. Mol Vis. 2009;15:2123.

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Ferrari G, Cook BD, Terushkin V, Pintucci G, Mignatti P. Transforming growth factor-beta 1 (TGF-β1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis. J Cell Physiol. 2009;219(2):449–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Viñals F, Pouysségur J. Transforming growth factor β1 (TGF-β1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-α signaling. Mol Cell Biol. 2001;21(21):7218–30.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Torricelli AA, Wilson SE. Cellular and extracellular matrix modulation of corneal stromal opacity. Exp Eye Res. 2014;129:151–60.

    Article  PubMed  CAS  Google Scholar 

  67. Chang Y, Wu X-Y. JNK1/2 siRNA inhibits transforming-growth factor-β1-induced connective tissue growth factor expression and fibrotic function in THSFs. Mol Cell Biochem. 2010;335(1–2):83–9.

    Article  PubMed  CAS  Google Scholar 

  68. Kim B, Tang Q, Biswas PS, Xu J, Schiffelers RM, Xie FY, et al. Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis. Am J Pathol. 2004;165(6):2177–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Campochiaro P. Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Gene Ther. 2006;13(6):559–62.

    Article  PubMed  CAS  Google Scholar 

  70. Tong YC, Chang SF, Liu CY, Kao WWY, Huang CH, Liaw J. Eye drop delivery of nano-polymeric micelle formulated genes with cornea-specific promoters. J Gene Med. 2007;9(11):956–66.

    Article  PubMed  CAS  Google Scholar 

  71. Shihadeh WA, Ritch R, Liebmann JM. Hyphema occurring during selective laser trabeculoplasty. Ophthalmic Surg Lasers Imaging Retin. 2006;37(5):432–3.

    Google Scholar 

  72. Najjar DM, Rapuano CJ, Cohen EJ. Descemet membrane detachment with hemorrhage after alkali burn to the cornea. Am J Ophthalmol. 2004;137(1):185–7.

    Article  PubMed  Google Scholar 

  73. Walker NJ, Foster A, Apel AJ. Traumatic expulsive iridodialysis after small-incision sutureless cataract surgery. J Cataract Refract Surg. 2004;30(10):2223–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Atyabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahir-Jouzdani, F., Soleimani, M., Mahbod, M. et al. Corneal chemical burn treatment through a delivery system consisting of TGF-β1 siRNA: in vitro and in vivo. Drug Deliv. and Transl. Res. 8, 1127–1138 (2018). https://doi.org/10.1007/s13346-018-0546-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-018-0546-0

Keywords

Navigation