Skip to main content
Log in

Controlled delivery of pirfenidone through vitamin E-loaded contact lens ameliorates corneal inflammation

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

A Correction to this article was published on 22 September 2018

This article has been updated

Abstract

Chemical injury by alkali burn is a major cause of corneal blindness in the clinical setting. Current management advocates multiple therapies aimed to prevent inflammation, initiate quick re-epithelialization, arrest the fibrosis, and avoid dry eye and pain by using bandage contact lenses. We hypothesized sustained delivery of the anti-inflammatory, antifibrotic drug pirfenidone through vitamin E-loaded contact lenses as a logical single approach to counter the pathology involved. Vitamin E particles were created in situ in commercial silicon hydrogel contact lenses by soaking the lenses in a vitamin E-ethanol solution. The vitamin E-laden lenses were then placed into pirfenidone-saline solution to load the drug into the lens. The contact lenses were evaluated by both in vitro and in vivo means. For in vitro, lenses were placed into 3 mL of saline solution. The concentration of pirfenidone released was measured by UV-vis spectrophotometry. The contact lenses were implanted in rabbit eyes following the alkali burn; the drug availability in the aqueous humor was evaluated by HPLC at various time points 10 min, 30 min, 2 h, and 3 h; and gene expression of inflammatory cytokines IL-1β, TNF-α, and TGF-β1 was evaluated in the cornea at the end of the study period. In another group of rabbits inflicted with alkali injury, the corneas were graded after 7 days of contact lens implantation with and without pirfenidone. A mathematical model was developed for delivery of the drug to the cornea and aqueous humor after a contact lens is inserted in the eye. The model was validated with experimental data and used to determine the bioavailability both for contact lenses and eye drops. In vitro release of unmodified commercial contact lenses saw a release time of approximately 20 min, with a partition coefficient of 2.68 ± 0.06. The release of pirfenidone from 20% vitamin E-loaded lenses saw a release time of approximately 80 min, with a partition coefficient of 4.20 ± 0.04. In vivo, the drug was available in the aqueous humor for up to 3 h. Gene expression of inflammatory cytokine IL-β1 and profibrotic growth factor TGF-β1 was significantly suppressed in corneas treated with pirfenidone contact lenses. A week after the alkali burn, the eyes with pirfenidone contact lenses showed significant improvement in corneal haze in comparison to the control eyes. About 50% of the drug loaded in the lens reached the aqueous humor compared to 1.3% with eye drops. Vitamin E-loaded contact lenses serve as a suitable platform for delivery of pirfenidone following alkali burn in rabbit eyes; positive pre-clinical outcome identifies it as promising therapy for addressing corneal inflammation and fibrosis. The bioavailability is about 40-fold higher for contact lenses compared to that for eye drops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 22 September 2018

    In the original article the typesetter made several errors. Figures 7 and 9 are incorrect. Following are the correct figures:

References

  1. Clare G, Suleman H, Bunce C, Dua H. Amniotic membrane transplantation for acute ocular burns. Cochrane Database Syst Rev. 2012;9:CD009379. https://doi.org/10.1002/14651858.CD009379.

    Article  Google Scholar 

  2. Wagoner MD. Chemical injuries of the eye: current concepts in pathophysiology and therapy. Surv Ophthalmol. 1997;41:275–313.

    Article  CAS  PubMed  Google Scholar 

  3. Maher TM. Pirfenidone in idiopathic pulmonary fibrosis. Drugs Today (Barc). 2010;46:473–82. https://doi.org/10.1358/dot.2010.46.7.1488336.

    Article  CAS  Google Scholar 

  4. Khanum BNMK, Guha R, Sur VP, Nandi S, Basak SK, Konar A, et al. Pirfenidone inhibits post-traumatic proliferative vitreoretinopathy. Eye. 2017;31:1317–28. https://doi.org/10.1038/eye2017.21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhong H, Sun G, Lin X, Wu K, Yu M. Evaluation of pirfenidone as a new postoperative antiscarring agent in experimental glaucoma surgery. Invest Ophthalmol Vis Sci. 2011;16:3136–42. https://doi.org/10.1167/iovs.10-6240.

    Article  CAS  Google Scholar 

  6. Sun G, Lin X, Zhong H, Yang Y, Qiu X, Ye C, et al. Pharmacokinetics of pirfenidone after topical administration in rabbit eye. Mol Vis. 2011;17:2191–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems. Prog Retin Eye Res. 1998;17:33–58.

    Article  CAS  PubMed  Google Scholar 

  8. Mitra AK. Ophthalmic drug delivery systems. New York: Marcel Dekker Inc; 1993. p. 60.

    Google Scholar 

  9. McNamara NA, Polse KA, Brand RJ, Graham AD, Chan JS, McKenney CD. Tear mixing under a soft contact lens: effects of lens diameter. Am J Ophthalmol. 1999;127:659–65.

    Article  CAS  PubMed  Google Scholar 

  10. Gause S, Hsu KH, Shafor C, Dixon P, Powell KC, Chauhan A. Mechanistic modeling of ophthalmic drug delivery to the anterior chamber by eye drops and contact lenses. Adv Colloid Interf Sci. 2016;233:139–54. https://doi.org/10.1016/j.cis.2015.08.002.

    Article  CAS  Google Scholar 

  11. Li C-C, Chauhan A. Modeling ophthalmic drug delivery by soaked contact lenses. Ind Eng Chem Res. 2006;45:3718–34. https://doi.org/10.1021/ie0507934.

    Article  CAS  Google Scholar 

  12. Peng C-C, Kim J, Chauhan A. Ivery of hydrophilic drugs from silicone-hydrogel contact lenses containing vitamin E diffusion barriers. Biomaterials. 2010;31:4032–47. https://doi.org/10.1016/j.biomaterials.2010.01.113.

    Article  CAS  PubMed  Google Scholar 

  13. Peng C-C, Chauhan A. Extended cyclosporine delivery by silicone-hydrogel contact lenses. J Control Release. 2011;154:267–74. https://doi.org/10.1016/j.jconrel.2011.06.028.

    Article  CAS  PubMed  Google Scholar 

  14. Peng C-C, Burke MT, Chauhan A. Transport of topical anesthetics in vitamin E loaded silicone hydrogel contact lenses. Langmuir. 2012;28:1478–87. https://doi.org/10.1021/la203606z.

    Article  CAS  PubMed  Google Scholar 

  15. Hsu K, Fentzke R, Chauhan A. Feasibility of corneal drug delivery of cysteamine using vitamin E modified silicone hydrogel contact lenses. Eur J Pharm Biopharm. 2013;85(3 PtA):531–40. https://doi.org/10.1016/j.ejpb.2013.04.017.

    Article  CAS  PubMed  Google Scholar 

  16. Paradiso P, Serro AP, Saramago B, Colaço R, Chauhan A. Controlled release of antibiotics from vitamin E-loaded silicone-hydrogel contact lenses. J Pharm Sci. 2016;105:1164–72. https://doi.org/10.1016/S0022-3549(15)00193-8.

    Article  CAS  PubMed  Google Scholar 

  17. Fantes EE, Hanna KD, Waring GO 3rd, Pouliquen Y, Thompson KP, et al. Wound healing after excimer laser keratomileusis (photorefractive keratectomy) in monkeys. Arch Ophthalmol. 1990;108:665–75.

    Article  CAS  PubMed  Google Scholar 

  18. Chan T, Payor S, HoldenB A. Corneal thickness profiles in rabbits using an ultrasonic pachometer. Invest Ophthalmol Vis Sci. 1983;24(10):1408–10.

    CAS  PubMed  Google Scholar 

  19. Zhang W, Prausnitz M, Edwards A. Model of transient drug diffusion across cornea. J Control Release. 2004;99(2):241–58. https://doi.org/10.1016/j.jconrel.2004.07.001. ISSN 0168–3659

    Article  CAS  PubMed  Google Scholar 

  20. Toris CB, Zhan G-L, McLaughlin MA. Effects of Brinzolamide on aqueous humor dynamics in monkeys and rabbits. J Ocul Pharmacol Ther 2004;19:397–404. doi: https://doi.org/10.1089/108076803322472962.

    Article  CAS  PubMed  Google Scholar 

  21. Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. Bull World Health Organ. 2001;79:214–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chowdhury S, Guha R, Trivedi R, Kompella UB, Konar A, Hazra S. Pirfenidone nanoparticles improve corneal wound healing and prevent scarring following alkali burn. PLoS One. 2013;8:e70528. https://doi.org/10.1371/journal.pone.0070528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang M, Yang Y, Lei M, Ye C, Zhao C, Xu J, et al. Experimental studies on soft contact lenses for controlled ocular delivery of pirfinedone: in vitro and in vivo. Drug Delivery. 2016;23:3538–43. https://doi.org/10.1080/10717544.2016.1204570.

    Article  CAS  PubMed  Google Scholar 

  24. Sotozono C, He MJ, Kita M, Imanshi J, Kinoshita S. Cytokine expression in alkali burned cornea. Curr Eye Res. 1997;16:670–6. https://doi.org/10.1076/ceyr.16.7.670.5057.

    Article  CAS  PubMed  Google Scholar 

  25. Cade F, Paschalis EI, Regatieri CV, Vavvas DG, Dana R, Dohlman CH. Alkali burn to the eye: protection using TNF-α inhibition. Cornea. 2014;33:382–9. https://doi.org/10.1097/ICO.0000000000000071.

    Article  PubMed  Google Scholar 

  26. Hassell JR, Birk DE. The molecular basis of corneal transparency. Exp Eye Res. 2010;91:326–35. https://doi.org/10.1016/j.exer.2010.06.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Macías-Barragán J, Sandoval-Rodríguez A, Navarro-Partida J, Armendáriz-Borunda J. The multifaceted role of pirfenidone and its novel targets. Fibrogenesis Tissue Repair. 2010;3:16. https://doi.org/10.1186/1755-1536-3-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Den S, Sotozono C, Kinoshita S, Ikeda T. Efficacy of early systemic betamethasone or cyclosporin A after corneal alkali injury via inflammatory cytokine reduction. Acta Ophthalmol Scand. 2004;82:195–9. https://doi.org/10.1046/j.1600-0420.2004.00229.x.

    Article  CAS  PubMed  Google Scholar 

  29. Creech JL, Chauhan A, Radke CJ. Dispersive mixing in the posterior tear film under a soft contact lens. Ind Eng Chem Res. 2001;40:3015–26. https://doi.org/10.1021/ie000596z.

    Article  CAS  Google Scholar 

  30. Zhu H, Chauhan A. A mathematical model for tear drainage through the canaliculi. Curr Eye Res. 2005;30:621–30. https://doi.org/10.1080/02713680590968628.

    Article  PubMed  Google Scholar 

  31. Edwards A, Prausnitz M. Fiber matrix model of sclera and corneal stroma for drug delivery to the eye. AICHE J. 1998;4:214–25. https://doi.org/10.1002/aic.690440123.

    Article  Google Scholar 

  32. Peng C-C, Chauhan A. Ion transport in silicone hydrogel contact lenses. J Membr Sci. 2012;399-400:95–105. https://doi.org/10.1016/j.memsci.2012.01.039.

    Article  CAS  Google Scholar 

  33. Watsky M, Jablonski M, Edelhauser H. Comparison of conjunctival and corneal surface areas in rabbit and human. J Curr Eye Res. 1988;7:483–6. https://doi.org/10.3109/02713688809031801.

    Article  CAS  Google Scholar 

  34. Prausnitz M, Edwards A. Predicted permeability of the cornea to topical drugs. J Pharm Res. 2001;18:1497–508.

    Article  Google Scholar 

  35. Prausntiz M, Noonan J. Permeability of cornea, sclera, and conjuctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87:1479–88.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the fund received from the Department of Science and Technology, Govt of India; West Bengal University of Animal & Fishery Sciences; CSIR-IICB; and the Dept of Chemical Engineering, University of Florida, for providing the necessary infrastructure.

Nomenclature

α, aspect ratio of barrier; φ, vitamin E loading in lens; φ, absorbed vitamin E in lens; τ, time scales of pirfenidone release of vitamin E loaded; τ0, time scales of pirfenidone release of control lens; Aconjunctiva, area of conjunctiva; As, surface area of contact lens; Caq, concentration of pirfenidone in aqueous humor/cornea system; Cg, concentration of pirfenidone in contact lens; Cg, f, concentration of pirfenidone in contact lens after loading; Cg, i, concentration of pirfenidone in contact lens after loading; Cl, f concentration of pirfenidone in loading solution; C0, concentration at time zero for tear film after the elution of the eye drop; Cr, concentration of pirfenidone in release medium; Cr, f, final concentration of release medium; Ctear, concentration of pirfenidone in tear film; D, diffusion coefficient of gel; f, fraction of drug released from the lens that reaches the cornea; feye drops, bioavailability of eye drops; h, half thickness of contact lens; hc, thickness of cornea; hPOLTF, thickness of tear film; ja, flux of pirfenidone into cornea; jlens, flux of pirfenidone from lens; Kg, partition coefficient of pirfenidone in contact lens; Kconjunctiva, permeability of pirfenidone in conjunctiva; Kcornea, permeability of pirfenidone in cornea; Mo, total mass of pirfenidone in an eye drop; qaq, volumetric drainage rate from aqueous humor/cornea system; qtear, drainage rate of tear film; t, time; td, diffusion time of pirfenidone in contact lens; td, aq, diffusion time of pirfenidone in aqueous humor; td, tear, diffusion time of pirfenidone in tear film; tq, aq, time scale of drainage from aqueous humor; tq, tear, time scale of drainage from tear film; Vaq, volume of aqueous humor and cornea; Vg, volume of contact lens; Vr, volume of release medium; Vtear, volume of tear film; y, axis of thickness

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarbani Hazra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixon, P., Ghosh, T., Mondal, K. et al. Controlled delivery of pirfenidone through vitamin E-loaded contact lens ameliorates corneal inflammation. Drug Deliv. and Transl. Res. 8, 1114–1126 (2018). https://doi.org/10.1007/s13346-018-0541-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-018-0541-5

Keywords

Navigation