Spatio-temporal dynamics of calcium electrotransfer during cell membrane permeabilization


Pulsed electric fields (PEFs) are applied as physical stimuli for DNA/drug delivery, cancer therapy, gene transformation, and microorganism eradication. Meanwhile, calcium electrotransfer offers an interesting approach to treat cancer, as it induces cell death easier in malignant cells than in normal cells. Here, we study the spatial and temporal cellular responses to 10 μs duration PEFs; by observing real-time, the uptake of extracellular calcium through the cell membrane. The experimental setup consisted of an inverted fluorescence microscope equipped with a color high-speed framing camera and a specifically designed miniaturized pulsed power system. The setup allowed us to accurately observe the permeabilization of HeLa S3 cells during application of various levels of PEFs ranging from 0.27 to 1.80 kV/cm. The low electric field experiments confirmed the threshold value of transmembrane potential (TMP). The high electric field observations enabled us to retrieve the entire spatial variation of the permeabilization angle (θ). The temporal observations proved that after a minimal permeabilization of the cell membrane, the ionic diffusion was the prevailing mechanism of the delivery to the cell cytoplasm. The observations suggest 0.45 kV/cm and 100 pulses at 1 kHz as an optimal condition to achieve full calcium concentration in the cell cytoplasm. The results offer precise levels of electric fields to control release of the extracellular calcium to the cell cytoplasm for inducing minimally invasive cancer calcium electroporation, an interesting affordable method to treat cancer patients with minimum side effects.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



Pulsed electric fields


Transmembrane potential


Minimum essential medium


Phosphate buffer saline


Ethylene diamine tetra acetic acid


Fetal bovine serum


Hank’s balanced salt solution


Metal oxide semiconductor field effect transistor


Voltage-dependent calcium channels


  1. 1.

    Hamilton WA, Sale AJH. Effects of high electric fields on microorganisms: II. Mechanism of action of the lethal effect. Biochim. Biophys. Acta BBA—Gen. Subj. 1967;148:789–800.

    Article  CAS  Google Scholar 

  2. 2.

    Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982;1:841–5.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  3. 3.

    Sale AJH, Hamilton WA. Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts. Biochim Biophys Acta BBA—Gen Subj. 1967;148:781–8.

    Article  Google Scholar 

  4. 4.

    Grahl T, Märkl H. Killing of microorganisms by pulsed electric fields. Appl Microbiol Biotechnol. 1995;45:148–57.

    Article  Google Scholar 

  5. 5.

    Guionet A. La décontamination bactérienne de l’eau par impulsions électriques ultracourtes [Internet] [phd]. Université de Toulouse, Université Toulouse III—Paul Sabatier; 2014 [cited 2015 Oct 9]. Available from:

  6. 6.

    Zbinden MDA, Sturm BSM, Nord RD, Carey WJ, Moore D, Shinogle H, et al. Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae. Biotechnol Bioeng. 2013;110:1605–15.

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Coustets M, Joubert-Durigneux V, Hérault J, Schoefs B, Blanckaert V, Garnier J-P, et al. Optimization of protein electroextraction from microalgae by a flow process. Bioelectrochemistry Amst Neth. 2015;103:74–81.

    Article  CAS  Google Scholar 

  8. 8.

    Guionet A, Hosseini B, Teissié J, Akiyama H, Hosseini H. A new mechanism for efficient hydrocarbon electro-extraction from Botryococcus braunii. Biotechnol Biofuels. 2017;10:39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Mir LM, Orlowski S, Belehradek Jr J, Paoletti C. Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer Clin Oncol. 1991;27:68–72.

    Article  CAS  Google Scholar 

  10. 10.

    Mir LM, Orlowski S. Mechanisms of electrochemotherapy. Adv Drug Deliv Rev. 1999;35:107–18.

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Rols MP, Tamzali Y, Teissié J. Electrochemotherapy of horses. A preliminary clinical report. Bioelectrochemistry Amst Neth. 2002;55:101–5.

    Article  CAS  Google Scholar 

  12. 12.

    Miklavčič D, Serša G, Brecelj E, Gehl J, Soden D, Bianchi G, et al. Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med. Biol. Eng. Comput. 2012;50:1213–25.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Frandsen SK, Gibot L, Madi M, Gehl J, Rols M-P. Calcium Electroporation: Evidence for differential effects in normal and malignant cell lines, evaluated in a 3D spheroid model. PLoS ONE [Internet]. 2015 [cited 2017 Jan 4];10. Available from:

  14. 14.

    Hansen EL, Sozer EB, Romeo S, Frandsen SK, Vernier PT, Gehl J. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength. PLoS One. 2015;10:e0122973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. 15.

    Tsong TY. Electroporation of cell membranes. Biophys J. 1991;60:297–306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand. 2003;177:437–47.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Golzio M, Gabriel B, Boissier F, Deuwille J, Rols MP, Teissié J. Calcium and electropermeabilized cells. J Soc Biol. 2003;197:301–10.

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Nuccitelli R, Chen X, Pakhomov AG, Baldwin WH, Sheikh S, Pomicter JL, et al. A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int J Cancer. 2009;125:438–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Zimmermann U, Pilwat G, Riemann F. Dielectric breakdown of cell membranes. Biophys J. 1974;14:881–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. 20.

    Grosse C, Schwan HP. Cellular membrane potentials induced by alternating fields. Biophys J. 1992;63:1632–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Teissié J, Rols MP. An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J. 1993;65:409–13.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Yamashita K, Hatanaka T, Akiyama H, Sakugawa T. Study of fast rise time pulse power generator using SiC-MOSFET and FRD. IEEE Pulsed Power Conf PPC. 2015;2015:1–4.

    Google Scholar 

  23. 23.

    Kang DK, Hosseini SHR, Shiraishi E, Yamanaka M, Akiyama H. Single nanosecond pulsed electric field effects on embryonic development of the Medaka fish. IEEE Trans Plasma Sci. 2012;40:2379–87.

    Article  CAS  Google Scholar 

  24. 24.

    Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Cole KS. Electric impedance of marine egg membranes. Trans Faraday Soc. 1937;33:966–72.

    Article  CAS  Google Scholar 

  26. 26.

    Schwan HP. Electric characteristics of tissues. Biophysik. 1963;1:198–208.

    Article  Google Scholar 

  27. 27.

    Neumann E, Sowers AE, Jordan CA. Electroporation and electrofusion in cell biology. Electroporation electrofusion cell biology. New York: Plenum; 1989.

  28. 28.

    Schoenbach KH, Joshi RP, Kolb JF, Chen N, Stacey M, Blackmore PF, et al. Ultrashort electrical pulses open a new gateway into biological cells. Proc IEEE. 2004;92:1122–37.

    Article  CAS  Google Scholar 

  29. 29.

    Stein MA, Mathers DA, Yan H, Baimbridge KG, Finlay BB. Enteropathogenic Escherichia coli markedly decreases the resting membrane potential of Caco-2 and HeLa human epithelial cells. Infect Immun. 1996;64:4820–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    Szabò I, Brutsche S, Tombola F, Moschioni M, Satin B, Telford JL, et al. Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. EMBO J. 1999;18:5517–27.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Zhang X, Jin Y, Plummer MR, Pooyan S, Gunaseelan S, Sinko PJ. Endocytosis and membrane potential are required for HeLa cell uptake of R.I.-CKTat9, a retro inverso Tat cell penetrating peptide. Mol Pharm. 2009;6:836–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Yamakage M, Namiki A. Calcium channels—basic aspects of their structure, function and gene encoding; anesthetic action on the channels—a review. Can J Anesth. 2002;49:151–64.

    Article  PubMed  Google Scholar 

  33. 33.

    Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57:411–25.

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Kelland LR, Burgess L, Steel GG. Characterization of four new cell lines derived from human squamous carcinomas of the uterine cervix. Cancer Res. 1987;47:4947–52.

    PubMed  CAS  Google Scholar 

  35. 35.

    Clapham DE. Calcium Signaling. Cell. 2007;131(6):1047–58.

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    Scarlett SS, White JA, Blackmore PF, Schoenbach KH, Kolb JF. Regulation of intracellular calcium concentration by nanosecond pulsed electric fields. Biochim Biophys Acta BBA—Biomembr. 2009;1788:1168–75.

    Article  CAS  Google Scholar 

  37. 37.

    Semenov I, Xiao S, Pakhomov AG. Primary pathways of intracellular Ca2+ mobilization by nanosecond pulsed electric field. Biochim Biophys Acta. 2013;1828:981–9.

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Semenov I, Xiao S, Pakhomova ON, Pakhomov AG. Recruitment of the intracellular Ca2+ by ultrashort electric stimuli: the impact of pulse duration. Cell Calcium. 2013;54:145–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. 39.

    Gabriel B, Teissié J. Time courses of mammalian cell electropermeabilization observed by millisecond imaging of membrane property changes during the pulse. Biophys J. 1999;76:2158–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. 40.

    Sweeney DC, Reberšek M, Dermol J, Rems L, Miklavčič D, Davalos RV. Quantification of cell membrane permeability induced by monopolar and high-frequency bipolar bursts of electrical pulses. Biochim. Biophys. Acta BBA—Biomembr. 2016;1858:2689–98.

    Article  CAS  Google Scholar 

  41. 41.

    Chen C, Smye SW, Robinson MP, Evans JA. Membrane electroporation theories: a review. Med Biol Eng Comput. 2006;44:5–14.

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Benz R, Beckers F, Zimmermann U. Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study. J Membr Biol. 1979;48:181–204.

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Zimmermann U. Electric breakdown, electropermeabilization and electrofusion. Rev Physiol Biochem Pharmacol. 1986;105:175–256.

    Article  Google Scholar 

  44. 44.

    Orio J, Bellard E, Baaziz H, Pichon C, Mouritzen P, Rols M-P, et al. Sub-cellular temporal and spatial distribution of electrotransferred LNA/DNA oligomer. J RNAi Gene Silenc Int J RNA Gene Target Res. 2013;9:479–85.

    CAS  Google Scholar 

  45. 45.

    Rols MP, Teissié J. Experimental evidence for the involvement of the cytoskeleton in mammalian cell electropermeabilization. Biochim Biophys Acta. 1992;1111:45–50.

    Article  PubMed  CAS  Google Scholar 

  46. 46.

    Teissie J, Rols MP. Manipulation of cell cytoskeleton affects the lifetime of cell membrane electropermeabilization. Ann N Y Acad Sci. 1994;720:98–110.

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Rosazza C, Escoffre J-M, Zumbusch A, Rols M-P. The actin cytoskeleton has an active role in the electrotransfer of plasmid DNA in mammalian cells. Mol Ther. 2011;19:913–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. 48.

    Rosazza C, Buntz A, Rieß T, Wöll D, Zumbusch A, Rols MP. Intracellular tracking of single plasmid DNA-particles after delivery by electroporation. Mol Ther. 2013;21(12):2217–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. 49.

    Li J, Lin H. Numerical simulation of molecular uptake via electroporation. Bioelectrochemistry. 2011;82:10–21.

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Vanbever R, Le B, Préat V. Transdermal delivery of fentanyl by electroporation I. Influence of electrical factors. Pharm Res. 1996;13:559–65.

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Denet A-R, Vanbever R, Préat V. Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev. 2004;56:659–74.

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Pucihar G, Kotnik T, Miklavčič D, Teissié J. Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys J. 2008;95:2837–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. 53.

    Zaharoff DA, Henshaw JW, Mossop B, Yuan F. Mechanistic analysis of electroporation-induced cellular uptake of macromolecules. Exp Biol Med (Maywood). 2008;233(1):94–105.

    Article  CAS  Google Scholar 

  54. 54.

    Pakhomov AG, Miklavcic D, Markov MS. Advanced electroporation techniques in biology and medicine. CRC Press; 2010.

Download references


The authors would like to thank Ms. M. Ota, Mr. R. Matsushima, and Mr. Mr. N. Ohnishi for their help in conducting the experiments.


This work was supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (17K06163).

Author information



Corresponding author

Correspondence to Hamid Hosseini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

(AVI 2031 kb)

(AVI 2125 kb)

(AVI 2412 kb)

(AVI 2590 kb)

(AVI 2558 kb)

(AVI 2443 kb)


(PPTX 3672 kb)


(PPTX 79 kb)


(PPTX 289 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guionet, A., Moosavi Nejad, S., Teissié, J. et al. Spatio-temporal dynamics of calcium electrotransfer during cell membrane permeabilization. Drug Deliv. and Transl. Res. 8, 1152–1161 (2018).

Download citation


  • Calcium electrotransfer
  • Pulsed electric fields
  • Permeabilization angle
  • Transmembrane potential
  • HeLa S3 cells