Drug Delivery and Translational Research

, Volume 8, Issue 3, pp 708–718 | Cite as

Comparing human peritoneal fluid and phosphate-buffered saline for drug delivery: do we need bio-relevant media?

  • Prabhat Bhusal
  • Jamie Lee Rahiri
  • Bruce Sua
  • Jessica E. McDonald
  • Mahima Bansal
  • Sara Hanning
  • Manisha Sharma
  • Kaushik Chandramouli
  • Jeff Harrison
  • Georgina Procter
  • Gavin Andrews
  • David S. Jones
  • Andrew G. Hill
  • Darren Svirskis
Original Article


An understanding of biological fluids at the site of administration is important to predict the fate of drug delivery systems in vivo. Little is known about peritoneal fluid; therefore, we have investigated this biological fluid and compared it to phosphate-buffered saline, a synthetic media commonly used for in vitro evaluation of intraperitoneal drug delivery systems. Human peritoneal fluid samples were analysed for electrolyte, protein and lipid levels. In addition, physicochemical properties were measured alongside rheological parameters. Significant inter-patient variations were observed with regard to pH (p < 0.001), buffer capacity (p < 0.05), osmolality (p < 0.001) and surface tension (p < 0.05). All the investigated physicochemical properties of peritoneal fluid differed from phosphate-buffered saline (p < 0.001). Rheological examination of peritoneal fluid demonstrated non-Newtonian shear thinning behaviour and predominantly exhibited the characteristics of an entangled network. Inter-patient and inter-day variability in the viscosity of peritoneal fluid was observed. The solubility of the local anaesthetic lidocaine in peritoneal fluid was significantly higher (p < 0.05) when compared to phosphate-buffered saline. Interestingly, the dissolution rate of lidocaine was not significantly different between the synthetic and biological media. Importantly, and with relevance to intraperitoneal drug delivery systems, the sustained release of lidocaine from a thermosensitive gel formulation occurred at a significantly faster rate into peritoneal fluid. Collectively, these data demonstrate the variation between commonly used synthetic media and human peritoneal fluid. The differences in drug release rates observed illustrate the need for bio-relevant media, which ultimately would improve in vitro-in vivo correlation.


Intraperitoneal Biological fluid In vivo-in vitro correlation Surgical Composition Rheology Solubility Dissolution 



We would like to thank the Faculty of Medical and Health Sciences, The University of Auckland, for providing scholarship to Mr Prabhat Bhusal. We would also like to thank The Auckland Medical Research Foundation (AMRF) for supporting this research project.

Compliance with ethical standards

Conflict of interest

Prabhat Bhusal, Jamie Lee Rahiri, Bruce Sua, Jessica E. McDonald, Mahima Bansal, Sara Hanning, Manisha Sharma, Kaushik Chandramouli, Jeff Harrison, Georgina Procter, Gavin Andrews, David S. Jones, Andrew G. Hill and Darren Svirskis declare that they have no conflict of interest.


  1. 1.
    Kahokehr A, Sammour T, Soop M, Hill AG. Intraperitoneal local anaesthetic in abdominal surgery—a systematic review. ANZ J Surg. 2011;81(4):237–45.CrossRefPubMedGoogle Scholar
  2. 2.
    Kahokehr A, Sammour T, Shoshtari KZ, Taylor M, Hill AG. Intraperitoneal local anesthetic improves recovery after colon resection: a double-blinded randomized controlled trial. Ann Surg. 2011;254(1):28–38.CrossRefPubMedGoogle Scholar
  3. 3.
    Kahokehr A, Sammour T, Srinivasa S, Hill AG. Systematic review and meta-analysis of intraperitoneal local anaesthetic for pain reduction after laparoscopic gastric procedures. Br J Surg. 2011;98(1):29–36.CrossRefPubMedGoogle Scholar
  4. 4.
    Bhusal P, Harrison J, Sharma M, Jones DS, Hill AG, Svirskis D. Controlled release drug delivery systems to improve post-operative pharmacotherapy. Drug Deliv and Transl Res. 2016;6:441–51.CrossRefGoogle Scholar
  5. 5.
    Pedersen PB, Vilmann P, Bar-Shalom D, Müllertz A, Baldursdottir S. Characterization of fasted human gastric fluid for relevant rheological parameters and gastric lipase activities. Eur J Pharm Biopharm. 2013;85(3):958–65.CrossRefPubMedGoogle Scholar
  6. 6.
    Corrigan OI, Devlin Y, Butler J. Influence of dissolution medium buffer composition on ketoprofen release from ER products and in vitro–in vivo correlation. Int J Pharm. 2003;254(2):147–54.CrossRefPubMedGoogle Scholar
  7. 7.
    Faisant N, Akiki J, Siepmann F, Benoit JP, Siepmann J. Effects of the type of release medium on drug release from PLGA-based microparticles: experiment and theory. Int J Pharm. 2006;314(2):189–97.CrossRefPubMedGoogle Scholar
  8. 8.
    Leelarasamee N, Howard SA, Ma JKH. Effect of surface active agents on drug release from polylactic acid-hydrocortisone microcapsules. J Microencapsul. 1988;5(1):37–46.CrossRefPubMedGoogle Scholar
  9. 9.
    Borzacchiello A, Ambrosio L, Netti P, Nicolais L. Rheology of biological fluids and their. tissue engineering novel delivery system. 2003:265.Google Scholar
  10. 10.
    Diakidou A, Vertzoni M, Goumas K, Söderlind E, Abrahamsson B, Dressman J, et al. Characterization of the contents of ascending colon to which drugs are exposed after oral administration to healthy adults. Pharm Res. 2009;26(9):2141–51.CrossRefPubMedGoogle Scholar
  11. 11.
    Fuchs A, Dressman JB. Composition and Physicochemical properties of fasted-state human duodenal and Jejunal fluid: a critical evaluation of the available data. J Pharm Sci. 2014;103(11):3398–411.CrossRefPubMedGoogle Scholar
  12. 12.
    Boegh M, Baldursdóttir SG, Müllertz A, Nielsen HM. Property profiling of biosimilar mucus in a novel mucus-containing in vitro model for assessment of intestinal drug absorption. Eur J Pharm Biopharm. 2014;87(2):227–35.CrossRefPubMedGoogle Scholar
  13. 13.
    Bhuanantanondh P, Grecov D, Kwok E. Rheological study of viscosupplements and synovial fluid in patients with osteoarthritis. J Med Biol Eng. 2012;32(1):12–6.CrossRefGoogle Scholar
  14. 14.
    Hanning SM, Yu T, Jones DS, Andrews GP, Kieser JA, Medlicott NJ. Lecithin-based emulsions for potential use as saliva substitutes in patients with xerostomia–viscoelastic properties. Int J Pharm. 2013;456(2):560–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Hanning S, Motoi L, Meducot N, Swindel S. A device for the collection of submandibular saliva. N Z Dent J. 2012;108(1):4–8.PubMedGoogle Scholar
  16. 16.
    Kelton JG, Ulan R, Stiller C, Holmes E. Comparison of chemical composition of peritoneal fluid and serum. A method for monitoring dialysis patients and a tool for assessing binding to serum proteins in vivo. Ann Intern Med. 1978;89(1):67–70.CrossRefPubMedGoogle Scholar
  17. 17.
    Noh SM. Measurement of peritoneal fluid pH in patients with non-serosal invasive gastric cancer. Yonsei Med J. 2003;44(1):45–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Marques MRC, Loebenberg R, Almukainzi M. Simulated biological fluids with possible application in dissolution testing. Dissolution Technology. 2011;18(3):15–28.CrossRefGoogle Scholar
  19. 19.
    Krier F, Riva R, Defrère S, Mestdagt M, Van Langendonckt A, Drion P, et al. Device-based controlled local delivery of anastrozol into peritoneal cavity: in vitro and in vivo evaluation. J Drug Deliv Sci Technol. 2014;24(2):198–204.CrossRefGoogle Scholar
  20. 20.
    Bugada D, De Gregori M, Compagnone C, Muscoli C, Raimondi F, Bettinelli S, et al. Continuous wound infusion of local anesthetic and steroid after major abdominal surgery: study protocol for a randomized controlled trial. Trials. 2015;16(1):357.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fung LK, Saltzman WM. Polymeric implants for cancer chemotherapy. Adv Drug Deliv Rev. 1997;26(2):209–30.CrossRefPubMedGoogle Scholar
  22. 22.
    Abadir AR, Nicolas F, Gharabawy R, Shah T, Michael R, editors. Efficacy of postoperative continuous wound infiltration with local anesthetic after major abdominal surgery. Proceedings of the Western Pharmacology Society; 2008.Google Scholar
  23. 23.
    Kohane DS, Tse JY, Yeo Y, Padera R, Shubina M, Langer R. Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J Biomed Mater Res A. 2006;77(2):351–61.CrossRefPubMedGoogle Scholar
  24. 24.
    Svirskis D, Chandramouli K, Bhusal P, Wu Z, Alphonso J, Chow J, et al. Injectable thermosensitive gelling delivery system for the sustained release of lidocaine. Ther Deliv. 2016;7(6):359–68.CrossRefPubMedGoogle Scholar
  25. 25.
    Bhusal P, Sharma M, Harrison J, Procter G, Andrews G, Jones DS, et al. Development, validation and application of a stability indicating HPLC method to quantify lidocaine from polyethylene-co-vinyl acetate (EVA) matrices and biological fluids. J Chromatogr Sci. 2017:1–7.Google Scholar
  26. 26.
    Guyton AC, Hall JE. Textbook of medical physiology: Elsevier Saunders. Philadelphia, PA 2006:764–5.Google Scholar
  27. 27.
    Hall JE. Guyton and Hall textbook of medical physiology. Elsevier Health Sciences; 2010.Google Scholar
  28. 28.
    Deutsch C, Taylor JS, Wilson DF. Regulation of intracellular pH by human peripheral blood lymphocytes as measured by 19F NMR. Proc Natl Acad Sci. 1982;79(24):7944–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gunji S, Obama K, Matsui M, Tabata Y, Sakai Y. A novel drug delivery system of intraperitoneal chemotherapy for peritoneal carcinomatosis using gelatin microspheres incorporating cisplatin. Surgery. 2013;154(5):991–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Konishi M, Tabata Y, Kariya M, Suzuki A, Mandai M, Nanbu K, et al. In vivo anti-tumor effect through the controlled release of cisplatin from biodegradable gelatin hydrogel. J Control Release. 2003;92(3):301–13.CrossRefPubMedGoogle Scholar
  31. 31.
    Varma MVS, Kaushal AM, Garg S. Influence of micro-environmental pH on the gel layer behavior and release of a basic drug from various hydrophilic matrices. J Control Release. 2005;103(2):499–510.CrossRefPubMedGoogle Scholar
  32. 32.
    Ramtoola Z, Corrigan OI. Influence of the buffering capacity of the medium on the dissolution of drug-excipient mixtures. Drug Dev Ind Pharm. 1989;15(14–16):2359–74.CrossRefGoogle Scholar
  33. 33.
    Clint JH. Surfactant aggregation. Springer Science & Business Media; 2012.Google Scholar
  34. 34.
    Laity PR, Holland C. Native silk feedstock as a model biopolymer: a rheological perspective. Biomacromolecules. 2016;17:2662–71.CrossRefPubMedGoogle Scholar
  35. 35.
    Kearney P, Marriott C. The effects of mucus glycoproteins on the bioavailability of tetracycline. I. Dissolution rate. Int J Pharm. 1986;28(1):33–40.CrossRefGoogle Scholar
  36. 36.
    Pedersen BL, Müllertz A, Brøndsted H, Kristensen HG. A comparison of the solubility of danazol in human and simulated gastrointestinal fluids. Pharm Res. 2000;17(7):891–4.CrossRefPubMedGoogle Scholar
  37. 37.
    Peets EA, Staub M, Symchowicz S. Plasma binding of betamethasone 3 H, dexamethasone-3 H, and cortisol-14 C—a comparative study. Biochem Pharmacol. 1969;18(7):1655–63.CrossRefPubMedGoogle Scholar
  38. 38.
    Routledge P. The plasma protein binding of basic drugs. Br J Clin Pharmacol. 1986;22(5):499–506.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Vertzoni M, Diakidou A, Chatzilias M, Söderlind E, Abrahamsson B, Dressman JB, et al. Biorelevant media to simulate fluids in the ascending colon of humans and their usefulness in predicting intracolonic drug solubility. Pharm Res. 2010;27(10):2187–96.CrossRefPubMedGoogle Scholar

Copyright information

© Controlled Release Society 2018

Authors and Affiliations

  • Prabhat Bhusal
    • 1
  • Jamie Lee Rahiri
    • 2
  • Bruce Sua
    • 2
  • Jessica E. McDonald
    • 1
  • Mahima Bansal
    • 1
  • Sara Hanning
    • 1
  • Manisha Sharma
    • 1
  • Kaushik Chandramouli
    • 1
  • Jeff Harrison
    • 1
  • Georgina Procter
    • 3
  • Gavin Andrews
    • 3
  • David S. Jones
    • 3
  • Andrew G. Hill
    • 2
  • Darren Svirskis
    • 1
  1. 1.School of Pharmacy, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
  2. 2.Department of Surgery, South Auckland Clinical Campus, Faculty of Medical and Health Sciences, Middlemore HospitalThe University of AucklandAucklandNew Zealand
  3. 3.School of PharmacyQueen’s University BelfastBelfastUK

Personalised recommendations