In vitro evaluation of the inhalable quercetin loaded nanoemulsion for pulmonary delivery

  • Noor Hafizah Arbain
  • Norazlinaliza Salim
  • Hamid Reza Fard Masoumi
  • Tin Wui Wong
  • Mahiran Basri
  • Mohd Basyaruddin Abdul Rahman
Original Article


Bioavailability of quercetin, a flavonoid potentially known to combat cancer, is challenging due to hydrophobic nature. Oil-in-water (O/W) nanoemulsion system could be used as nanocarrier for quercertin to be delivered to lung via pulmonary delivery. The novelty of this nanoformulation was introduced by using palm oil ester/ricinoleic acid as oil phase which formed spherical shape nanoemulsion as measured by transmission electron microscopy and Zetasizer analyses. High energy emulsification method and D-optimal mixture design were used to optimize the composition towards the volume median diameter. The droplet size, polydispersity index, and zeta potential of the optimized formulation were 131.4 nm, 0.257, and 51.1 mV, respectively. The formulation exhibited high drug entrapment efficiency and good stability against phase separation and storage at temperature 4 °C for 3 months. It was discovered that the system had an acceptable median mass aerodynamic diameter (3.09 ± 0.05 μm) and geometric standard deviation (1.77 ± 0.03) with high fine particle fraction (90.52 ± 0.10%), percent dispersed (83.12 ± 1.29%), and percent inhaled (81.26 ± 1.28%) for deposition in deep lung. The in vitro release study demonstrated that the sustained release pattern of quercetin from naneomulsion formulation up to 48 h of about 26.75% release and it was in adherence to Korsmeyer’s Peppas mechanism. The cytotoxicity study demonstrated that the optimized nanoemulsion can potentially induce cyctotoxicity towards A549 lung cancer cells without affecting the normal cells. These results of the study suggest that nanoemulsion is a potential carrier system for pulmonary delivery of molecules with low water solubility like quercetin.


Palm oil ester Nanoemulsion Quercetin Pulmonary delivery D-optimal mixture design 



The financial assistance provided from MyBRAIN 15 for Arbain N.H. by Ministry of Higher Education Malaysia (MOHE) and NanoMITe research grant (Vote. No. 5526306) were gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Islami F, Torre LA, Jemal A. Global trends of lung cancer mortality and smoking prevalence. Transl. Lung. Cancer Res. 2015;4:327–38.Google Scholar
  2. 2.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRefPubMedGoogle Scholar
  3. 3.
    Kumar A, Sahoo SK, Padhee K, Pal P, Kochar S, Satapathy A, et al. Reveiw on solubility enhancement techniques for hydrophobic drugs. Int J Compr Pharm. 2011;2:1–7.Google Scholar
  4. 4.
    Lu J, Liong M, Zink JI, Tamanoi F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small. 2007;3:1341–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Tseng C-L, SY-H W, Wang W-H, Peng C-L, Lin F-H, Lin C-C, et al. Targeting efficiency and biodistribution of biotinylated-EGF-conjugated gelatin nanoparticles administered via aerosol delivery in nude mice with lung cancer. Biomaterials. 2008;29:3014–22.CrossRefPubMedGoogle Scholar
  6. 6.
    Garbuzenko OB, Saad M, Pozharov VP, Reuhl KR, Mainelis G, Minko T. Inhibition of lung tumor growth by complex pulmonary delivery of drugs with oligonucleotides as suppressors of cellular resistance. Proc Natl Acad Sci U S A. 2010;107:10737–42.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Akhter S, Ahmad J, Rizwanullah M, Rahman M, Zaki Ahmad M, Rizvi MMA, et al. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol Sci Appl. 2015;8:55.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Azarmi S, Roa WH, Löbenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev. 2008;60:863–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007;25:563–70.CrossRefPubMedGoogle Scholar
  10. 10.
    Scalia S, Trotta V, Traini D, Young PM, Sticozzi C, Cervellati F, et al. Incorporation of quercetin in respirable lipid microparticles: effect on stability and cellular uptake on A549 pulmonary alveolar epithelial cells. Colloids Surfaces B Biointerfaces. 2013;112:322–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Nasr M, Nawaz S, Elhissi A. Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization. Int J Pharm. 2012;436:611–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56:588–99.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Vanden Burgt JA, Busse WW, Martin RJ, Szefler SJ, Donnell D. Efficacy and safety overview of a new inhaled corticosteroid, QVAR (hydrofluoroalkane-beclomethasone extrafine inhalation aerosol), in asthma. J Allergy Clin Immunol. 2000;106:1209–26.CrossRefGoogle Scholar
  14. 14.
    Verma NK, Crosbie-Staunton K, Satti A, Gallagher S, Ryan KB, Doody T, et al. Magnetic core-shell nanoparticles for drug delivery by nebulization. J Nanobiotechnol. 2013;11(1):1.CrossRefGoogle Scholar
  15. 15.
    Graefe EU, Derendorf H, Pharmacokinetics VM. Bioavailability of the flavonol quercetin in humans. Int J Clin Pharmacol Ther. 1999;37:219–33.PubMedGoogle Scholar
  16. 16.
    Di Carlo G, Mascolo N, Izzo AA, Capasso F. Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci. 1999;65:337–53.CrossRefPubMedGoogle Scholar
  17. 17.
    Pralhad T, Rajendrakumar K. Study of freeze-dried quercetin–cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. J Pharm Biomed Anal. 2004;34:333–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Kelly GS, Gregory S, Kelly ND. Altern. Med Rev. 2011;16:172–94.Google Scholar
  19. 19.
    Karadag A, Yang X, Ozcelik B, Huang Q. Optimization of preparation conditions for quercetin nanoemulsions using response surface methodology. J Agric Food Chem. 2013;61(9):2130–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Azuma K, Ippoushi K, Ito H, Higashio H, Terao J. Combination of lipids and emulsifiers enhances the absorption of orally administered quercetin in rats. J Agric Food Chem. 2002;50:1706–12.CrossRefPubMedGoogle Scholar
  21. 21.
    Solans C, Izquierdo P, Nolla J, Azemar N. Nano-emulsions. 2005;10:102–110.Google Scholar
  22. 22.
    Nesamony J, Shah IS, Kalra A, Jung R. Nebulized oil-in-water nanoemulsion mists for pulmonary delivery: development, physico-chemical characterization and in vitro evaluation. Drug Dev Ind Pharm. 2014;40:1253–63.CrossRefPubMedGoogle Scholar
  23. 23.
    Amani A, York P, Chrystyn H, Clark BJ. Evaluation of a Nanoemulsion-based formulation for respiratory delivery of budesonide by nebulizers. AAPS PharmSciTech. 2010;11:1147–51.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Keng PS, Basri M, Zakaria MRS, Rahman MBA, Ariff AB, Rahman RNZA, et al. Newly synthesized palm esters for cosmetics industry. Ind Crop Prod. 2009;29:37–44.CrossRefGoogle Scholar
  25. 25.
    Abdelrahim ME. Aerodynamic characteristics of nebulized terbutaline sulphate using the Andersen Cascade impactor compared to the next generation impactor. Pharm Dev Technol. 2011;16:137–45.CrossRefPubMedGoogle Scholar
  26. 26.
    Musa SH, Basri M, Masoumi HRF, Karjiban RA, Malek EA, Basri H, et al. Formulation optimization of palm kernel oil esters nanoemulsion-loaded with chloramphenicol suitable for meningitis treatment. Colloids Surfaces B Biointerfaces. 2013;112:113–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Samson S, Basri M, Fard Masoumi HR, Karjiban RA, Malek EA. Design and development of a nanoemulsion system containing copper peptide by D-optimal mixture design and evaluation of its physicochemical properties. RSC Adv. 2016;6:17845–56.CrossRefGoogle Scholar
  28. 28.
    Beck-Broichsitter M, Kleimann P, Schmehl T, Betz T, Bakowsky U, Kissel T, et al. Impact of lyoprotectants for the stabilization of biodegradable nanoparticles on the performance of air-jet, ultrasonic, and vibrating-mesh nebulizers. Eur J Pharm Biopharm. 2012;82:272–80.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang G, David A, Wiedmann TS. Performance of the vibrating membrane aerosol generation device: Aeroneb micropump nebulizer ™. J Aerosol Med. 2007;20:408–16.CrossRefPubMedGoogle Scholar
  30. 30.
    Ghazanfari T, Elhissi AMA, Ding Z, Taylor KMG. The influence of fluid physicochemical properties on vibrating-mesh nebulization. Int J Pharm. 2007;339:103–11.CrossRefPubMedGoogle Scholar
  31. 31.
    Lee W-H, Loo C-Y, Young PM, Traini D, Mason RS, Rohanizadeh R. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin Drug Deliv. 2014;11:1183–201.CrossRefPubMedGoogle Scholar
  32. 32.
    Ganta S, Singh A, Rawal Y, Cacaccio J, Patel NR, Kulkarni P, et al. Formulation development of a novel targeted theranostic nanoemulsion of docetaxel to overcome multidrug resistance in ovarian cancer. Drug Deliv. 2014;7544:1–13.CrossRefGoogle Scholar
  33. 33.
    Mat Hadzir N, Basri M, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RNZ, Basri H. Phase behaviour and formation of fatty acid esters Nanoemulsions containing Piroxicam. AAPS PharmSciTech. 2013;14:456–63.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Alayoubi A, Kanthala S, Satyanarayanajois SD, Anderson JF, Sylvester PW, Nazzal S. Stability and in vitro antiproliferative activity of bioactive “vitamin E” fortified parenteral lipid emulsions. Colloids Surfaces B Biointerfaces. 2013;103:23–30.CrossRefPubMedGoogle Scholar
  35. 35.
    Mirhosseini H, Tan CP, Hamid NSA, Yusof S. Effect of Arabic gum, xanthan gum and orange oil contents on ζ-potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids Surfaces A Physicochem Eng Asp. 2008;315:47–56.CrossRefGoogle Scholar
  36. 36.
    Lemarie E, Vecellio L, Hureaux J, Prunier C, Valat C, Grimbert D, et al. Aerosolized gemcitabine in patients with carcinoma of the lung: feasibility and safety study. J Aerosol Med Pulm Drug Deliv. 2011;24:261–70.CrossRefPubMedGoogle Scholar
  37. 37.
    Dian L, Yu E, Chen X, Wen X, Zhang Z, Qin L, et al. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Res Lett. 2014;9:684.CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Diab R, Brillault J, Bardy A, Gontijo AVL, Olivier JC. Formulation and in vitro characterization of inhalable polyvinyl alcohol-free rifampicin-loaded PLGA microspheres prepared with sucrose palmitate as stabilizer: efficiency for ex vivo alveolar macrophage targeting. Int J Pharm. 2012;436:833–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Siepmann F. Mathematical modeling of drug delivery. Int J Pharm Elsevier. 2008;364:328–43.CrossRefGoogle Scholar
  40. 40.
    Rahman M, Hasan S, Alam A, Roy S, Jha MK, Ahsan Q, et al. Formulation and evaluation of ranolazine sustained release matrix tablets using eudragit and HPMC. Int J PharmBiomed Res. 2011;2:7–12.Google Scholar
  41. 41.
    Aditya NP, Shim M, Lee I, Lee Y, Im MH, Ko S. Curcumin and genistein coloaded nanostructured lipid carriers: in vitro digestion and antiprostate cancer activity. J Agric Food Chem. 2013;61:1878–83.CrossRefPubMedGoogle Scholar

Copyright information

© Controlled Release Society 2018

Authors and Affiliations

  • Noor Hafizah Arbain
    • 1
  • Norazlinaliza Salim
    • 1
  • Hamid Reza Fard Masoumi
    • 1
  • Tin Wui Wong
    • 2
  • Mahiran Basri
    • 1
  • Mohd Basyaruddin Abdul Rahman
    • 1
  1. 1.Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISEUniversiti Teknologi MARAPuncak AlamMalaysia

Personalised recommendations