Siew A. Solving poor solubility to unlock a drug’s potential. Pharm Technol. 2015;39:20–7.
Google Scholar
Serajuddin AT. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59(7):603–16.
CAS
PubMed
Article
Google Scholar
Good DJ, Rodríguez-Hornedo NR. Solubility advantage of pharmaceutical cocrystals. Cryst Growth Des. 2009;9:2252–64.
CAS
Article
Google Scholar
Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29(3–4):278–87.
CAS
PubMed
Article
Google Scholar
Dahan A, Miller JM, Hoffman A, Amidon GE, Amidon GL. The solubility-permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. J Pharm Sci. 2010;99(6):2739–49.
CAS
PubMed
Article
Google Scholar
Shah N, Sandhu H, Phuapradit W, Pinal R, Iyer R, Albano A, et al. Development of novel microprecipitated bulk powder (MBP) technology for manufacturing stable amorphous formulations of poorly soluble drugs. Int J Pharm. 2012;438(1–2):53–60.
CAS
PubMed
Article
Google Scholar
Chiou WL, Riegelman S. Oral absorption of griseofulvin in dogs: increased absorption via solid dispersion in polyethylene glycol 6000. J Pharm Sci. 1970;59(7):937–42.
CAS
PubMed
Article
Google Scholar
Serajuddin AT. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058–66.
CAS
PubMed
Article
Google Scholar
Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98(8):2549–72.
CAS
PubMed
Article
Google Scholar
Miller JM, Beig A, Carr RA, Spence JK, Dahan A. A win-win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Mol Pharm. 2012;9(7):2009–16.
CAS
PubMed
Article
Google Scholar
Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.
CAS
PubMed
Article
Google Scholar
Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JA. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5(6):1003–19.
CAS
PubMed
Article
Google Scholar
Breitenbach J. Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm. 2002;54(2):107–17.
CAS
PubMed
Article
Google Scholar
Taylor LS, Zhang GG. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv Drug Deliv Rev. 2016;101:122–42.
CAS
PubMed
Article
Google Scholar
Sun DD, Lee PI. Evolution of supersaturation of amorphous pharmaceuticals: the effect of rate of supersaturation generation. Mol Pharm. 2013;10(11):4330–46.
CAS
PubMed
Article
Google Scholar
Colombo P. Swelling-controlled release in hydrogel matrices for oral route. Adv Drug Deliv Rev. 1993;11:37–57.
CAS
Article
Google Scholar
Siepmann J, Siepmann F. Modeling of diffusion controlled drug delivery. J Control Release. 2012;161(2):351–62.
CAS
PubMed
Article
Google Scholar
Nguyen TN, Tran PH, Van Vo T, Duan W, Truong-Dinh Tran T. Development of a sustained release solid dispersion using swellable polymer by melting method. Pharm Res. 2016;33(1):102–9.
CAS
PubMed
Article
Google Scholar
LaFountaine JS, Prasad LK, Miller DA, McGinity JW, Williams RO 3rd. Mucoadhesive amorphous solid dispersions for sustained release of poorly water soluble drugs. Eur J Pharm Biopharm. 2017;113:157–67.
CAS
PubMed
Article
Google Scholar
Tres F, Treacher K, Booth J, Hughes LP, Wren SA, Aylott JW, et al. Indomethacin-Kollidon VA64 extrudates: a mechanistic study of pH-dependent controlled release. Mol Pharm. 2016;13(3):1166–75.
CAS
PubMed
Article
Google Scholar
Crowley MM, Schroeder B, Fredersdorf A, Obara S, Talarico M, Kucera S, et al. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int J Pharm. 2004;269(2):509–22.
CAS
PubMed
Article
Google Scholar
Debenedetti PB. Metastable liquids: concepts and principles. Princeton: Princeton University Press; 1996.
Google Scholar
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26.
CAS
PubMed
Article
Google Scholar
Dokoumetzidis A, Macheras P. A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Int J Pharm. 2006;321(1–2):1–11.
CAS
PubMed
Article
Google Scholar
Janssens S, Van den Mooter G. Review: physical chemistry of solid dispersions. J Pharm Pharmacol. 2009;61(12):1571–86.
CAS
PubMed
Article
Google Scholar
LaMer V, Dinegar R. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc. 1950;72:4847–54.
CAS
Article
Google Scholar
Sarode AL, Wang P, Obara S, Worthen DR. Supersaturation, nucleation, and crystal growth during single- and biphasic dissolution of amorphous solid dispersions: polymer effects and implications for oral bioavailability enhancement of poorly water soluble drugs. Eur J Pharm Biopharm. 2014;86(3):351–60.
CAS
PubMed
Article
Google Scholar
Hilden LR, Morris KR. Physics of amorphous solids. J Pharm Sci. 2004;93(1):3–12.
CAS
PubMed
Article
Google Scholar
Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res. 1995;12(6):799–806.
CAS
PubMed
Article
Google Scholar
Chokshi RJ, Shah NH, Sandhu HK, Malick AW, Zia H. Stabilization of low glass transition temperature indomethacin formulations: impact of polymer-type and its concentration. J Pharm Sci. 2008;97(6):2286–98.
CAS
PubMed
Article
Google Scholar
Vasanthavada M, Tong WQ, Joshi Y, Kislalioglu MS. Phase behavior of amorphous molecular dispersions I: determination of the degree and mechanism of solid solubility. Pharm Res. 2004;21(9):1598–606.
CAS
PubMed
Article
Google Scholar
Wang X, Michoel A, Van den Mooter G. Solid state characteristics of ternary solid dispersions composed of PVP VA64, Myrj 52 and itraconazole. Int J Pharm. 2005;303(1–2):54–61.
CAS
PubMed
Article
Google Scholar
Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2008;364(2):328–43.
CAS
PubMed
Article
Google Scholar
Keen JM, Hughey JR, Bennett RC, Jannin V, Rosiaux Y, Marchaud D, et al. Effect of tablet structure on controlled release from supersaturating solid dispersions containing glyceryl behenate. Mol Pharm. 2015;12(1):120–6.
CAS
PubMed
Article
Google Scholar
Verma S, Rudraraju VS. Disintegration mediated controlled release supersaturating solid dispersion formulation of an insoluble drug: design, development, optimization, and in vitro evaluation. AAPS PharmSciTech. 2015;16(1):85–97.
CAS
PubMed
Article
Google Scholar
Goepferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996;17:103–14.
CAS
Article
Google Scholar
Pokharkar VB, Mandpe LP, Padamwar MN, Ambike AA, Mahadik RK, Paradkar A. Development, characterization and stabilization of amorphous form of a low Tg drug. Powder Technol. 2006;167(1):20–5.
CAS
Article
Google Scholar
Tajarobi F, Larsson A, Matic H, Abrahmsen-Alami S. The influence of crystallization inhibition of HPMC and HPMCAS on model substance dissolution and release in swellable matrix tablets. Eur J Pharm Biopharm. 2011;78(1):125–33.
CAS
PubMed
Article
Google Scholar
Fan C, Pai-Thakur R, Phuapradit W, Zhang L, Tian H, Malick W, et al. Impact of polymers on dissolution performance of an amorphous gelleable drug from surface-coated beads. Eur J Pharm Sci. 2009;37(1):1–10.
CAS
PubMed
Article
Google Scholar
Alderman D. A review of cellulose ethers in hydrophilic matrices for oral controlled-release dosage forms. Int J Pharm Technol Prod Manuf. 1984;5(3):1–9.
CAS
Google Scholar
Sun DD, Lee PI. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers. J Control Release. 2015;211:85–93.
CAS
PubMed
Article
Google Scholar
Sun DD, Ju TC, Lee PI. Enhanced kinetic solubility profiles of indomethacin amorphous solid dispersions in poly(2-hydroxyethyl methacrylate) hydrogels. Eur J Pharm Biopharm. 2012;81(1):149–58.
CAS
PubMed
Article
Google Scholar
Meng F, Meckel J, Zhang F. Investigation of itraconazole ternary amorphous solid dispersions based on povidone and Carbopol. Eur J Pharm Sci. 2017;106:413–21.
CAS
PubMed
Article
Google Scholar
Demuth B, Nagy ZK, Balogh A, Vigh T, Marosi G, Verreck G, et al. Downstream processing of polymer-based amorphous solid dispersions to generate tablet formulations. Int J Pharm. 2015;486(1–2):268–86.
CAS
PubMed
Article
Google Scholar
Jijun F, Lishuang X, Xiaoli W, Shu Z, Xiaoguang T, Xingna Z, et al. Nimodipine (NM) tablets with high dissolution containing NM solid dispersions prepared by hot-melt extrusion. Drug Dev Ind Pharm. 2011;37(8):934–44.
PubMed
Article
CAS
Google Scholar
Nemet Z, Sztatisz J, Demeter A. Polymorph transitions of bicalutamide: a remarkable example of mechanical activation. J Pharm Sci. 2008;97(8):3222–32.
CAS
PubMed
Article
Google Scholar
Leane MM, Sinclair W, Qian F, Haddadin R, Brown A, Tobyn M, et al. Formulation and process design for a solid dosage form containing a spray-dried amorphous dispersion of ibipinabant. Pharm Dev Technol. 2013;18(2):359–66.
CAS
PubMed
Article
Google Scholar
Finch CA. Hydrophilic polymers. In: Dyson RW, editor. Specialty polymers. Springer US; 1987. p. 65–82.
Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23–24):1068–75.
CAS
PubMed
Article
Google Scholar
Li CL, Martini LG, Ford JL, Roberts M. The use of hypromellose in oral drug delivery. J Pharm Pharmacol. 2005;57(5):533–46.
CAS
PubMed
Article
Google Scholar
Rogers TL. Hypromellose. In: Rowe RC, Sheskey PJ, Quinn ME, editors. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical Press; 2009. p. 326–9.
Google Scholar
Six K, Daems T, de Hoon J, Van Hecken A, Depre M, Bouche MP, et al. Clinical study of solid dispersions of itraconazole prepared by hot-stage extrusion. Eur J Pharm Sci. 2005;24(2–3):179–86.
CAS
PubMed
Article
Google Scholar
Paaver U, Heinamaki J, Laidmae I, Lust A, Kozlova J, Sillaste E, et al. Electrospun nanofibers as a potential controlled-release solid dispersion system for poorly water-soluble drugs. Int J Pharm. 2015;479(1):252–60.
CAS
PubMed
Article
Google Scholar
Sheth AR, Bates S, Muller FX, Grant DJW. Polymorphism in piroxicam. Cryst Growth Des. 2004;4:1091–8.
CAS
Article
Google Scholar
Shergill M, Patel M, Khan S, Bashir A, McConville C. Development and characterisation of sustained release solid dispersion oral tablets containing the poorly water soluble drug disulfiram. Int J Pharm. 2016;497(1–2):3–11.
CAS
PubMed
Article
Google Scholar
Lee H-J, Kim J-Y, Park S-H, Rhee Y-S, Park C-W, Park E-S. Controlled-release oral dosage forms containing nimodipine solid dispersion and hydrophilic carriers. J Drug Deliv Sci Technol. 37:28–37.
Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001;48(2–3):139–57.
CAS
PubMed
Article
Google Scholar
Lu Z, Yang Y, Covington RA, Bi YV, Durig T, Ilies MA, et al. Supersaturated controlled release matrix using amorphous dispersions of glipizide. Int J Pharm. 2016;511(2):957–68.
CAS
PubMed
Article
Google Scholar
Lu Z, Yang Y, Covington RA, Bi YV, Durig T, Fassihi R. Amorphous-based controlled-release gliclazide matrix system. AAPS PharmSciTech. 2016;18(5):1699–709.
PubMed
Article
CAS
Google Scholar
Tran PH, Tran TT, Piao ZZ, Vo TV, Park JB, Lim J, et al. Physical properties and in vivo bioavailability in human volunteers of isradipine using controlled release matrix tablet containing self-emulsifying solid dispersion. Int J Pharm. 2013;450(1–2):79–86.
CAS
PubMed
Article
Google Scholar
Lin Q, Fu Y, Li J, Qu M, Deng L, Gong T, et al. A (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer)-dispersed sustained-release tablet for imperialine to simultaneously prolong the drug release and improve the oral bioavailability. Eur J Pharm Sci. 2015;79:44–52.
CAS
PubMed
Article
Google Scholar
Tran HT, Park JB, Hong KH, Choi HG, Han HK, Lee J, et al. Preparation and characterization of pH-independent sustained release tablet containing solid dispersion granules of a poorly water-soluble drug. Int J Pharm. 2011;415(1–2):83–8.
CAS
PubMed
Article
Google Scholar
Draganoiu E, Rajabi-Siahboomi A, Tiwari S. Carbomer. In: Rowe RC, Sheskey PJ, Quinn ME, editors. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical Press; 2009. p. 110–4.
Google Scholar
Sun DD, Lee PI. Crosslinked hydrogels—a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs. Acta Pharm Sin B. 2014;4(1):26–36.
PubMed
PubMed Central
Article
Google Scholar
Law KY. Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right. J Phys Chem Lett. 2014;5(4):686–8.
CAS
PubMed
Article
Google Scholar
Desai J, Alexander K, Riga A. Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. Int J Pharm. 2006;308(1–2):115–23.
CAS
PubMed
Article
Google Scholar
Snejdrova E, Drastik M, Dittrich M, Kastner P, Nguyenova J. Mucoadhesive plasticized system of branched poly(lactic-co-glycolic acid) with aciclovir. Drug Dev Ind Pharm. 2016;42(10):1653–9.
CAS
PubMed
Article
Google Scholar
Dang N, Sivakumaran H, Harrich D, Shaw PN, Coombes AG. Evaluation of polycaprolactone matrices for sustained vaginal delivery of nevirapine in the prevention of heterosexual HIV transmission. J Pharm Sci. 2014;103(7):2107–15.
CAS
PubMed
Article
Google Scholar
Jannin V, Rodier JD, Musakhanian J. Polyoxylglycerides and glycerides: effects of manufacturing parameters on API stability, excipient functionality and processing. Int J Pharm. 2014;466(1–2):109–21.
CAS
PubMed
Article
Google Scholar
Lu M, Xiong D, Sun W, Yu T, Hu Z, Ding J, et al. Sustained release ivermectin-loaded solid lipid dispersion for subcutaneous delivery: in vitro and in vivo evaluation. Drug Deliv. 2017;24(1):622–31.
CAS
PubMed
Article
Google Scholar
Shah NV, Seth AK, Balaraman R, Aundhia CJ, Maheshwari RA, Parmar GR. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: design and in vivo study. J Adv Res. 2016;7(3):423–34.
CAS
PubMed
PubMed Central
Article
Google Scholar
Liu Y, Salituro GM, Lee KJ, Bak A, Leung DH. Modulating drug release and enhancing the oral bioavailability of torcetrapib with solid lipid dispersion formulations. AAPS PharmSciTech. 2015;16(5):1091–100.
CAS
PubMed
PubMed Central
Article
Google Scholar