Skip to main content

Advertisement

Log in

Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Cutaneous leishmaniasis (CL) is an infectious, parasitic disease caused by the protozoan Leishmania. Amphotericin B (AMB) is a macrolide polyene antibiotic presenting potent antifungal and antileishmanial activity, but due to poor water solubility at physiological pH, side effects, and toxicity, its therapeutic efficiency is limited. In the present study, poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with AMB were generated to reduce drug toxicity and facilitate localized delivery over a prolonged time. AMB NPs were characterized for particle size, zeta potential, polydispersity index, and degree of aggregation. In vitro assessments demonstrated its sustained activity against Leishmania major promastigotes and parasite-infected macrophages. A single intralesional administration to infected BALB/c mice revealed that AMB NPs were more effective than AMB deoxycholate in terms of reducing lesion area. Taken together, these findings suggest that AMB NPs improve AMB delivery and can be used for local treatment of CL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gutierrez V, Seabra AB, Reguera RM, Khandare J, Calderon M. New approaches from nanomedicine for treating leishmaniasis. Chem Soc Rev. 2016;45(1):152–68. https://doi.org/10.1039/c5cs00674k.

    Article  CAS  PubMed  Google Scholar 

  2. Kaye P, Scott P. Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol. 2011;9(8):604–15. https://doi.org/10.1038/nrmicro2608.

    Article  CAS  PubMed  Google Scholar 

  3. Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, Kamhawi S, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008;321(5891):970–4. https://doi.org/10.1126/science.1159194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Handler MZ, Patel PA, Kapila R, Al-Qubati Y, Schwartz RA. Cutaneous and mucocutaneous leishmaniasis: differential diagnosis, diagnosis, histopathology, and management. J Am Acad Dermatol. 2015;73(6):911–26; 27-8. https://doi.org/10.1016/j.jaad.2014.09.014.

    Article  PubMed  Google Scholar 

  5. Lemke A, Kiderlen AF, Kayser O. Amphotericin B. Appl Microbiol Biotechnol. 2005;68(2):151–62. https://doi.org/10.1007/s00253-005-1955-9.

    Article  CAS  PubMed  Google Scholar 

  6. Torrado JJ, Espada R, Ballesteros MP, Torrado-Santiago S. Amphotericin B formulations and drug targeting. J Pharm Sci. 2008;97(7):2405–25. https://doi.org/10.1002/jps.21179.

    Article  CAS  PubMed  Google Scholar 

  7. Mbongo N, Loiseau PM. Billion MA, Robert-Gero M. mechanism of amphotericin B resistance in Leishmania donovani promastigotes. Antimicrob Agents Chemother. 1998;42(2):352–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Paila YD, Saha B, Chattopadhyay A. Amphotericin B inhibits entry of Leishmania donovani into primary macrophages. Biochem Biophys Res Commun. 2010;399(3):429–33. https://doi.org/10.1016/j.bbrc.2010.07.099.

    Article  CAS  PubMed  Google Scholar 

  9. Escobar P, Matu S, Marques C, Croft SL. Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH(3) (edelfosine) and amphotericin B. Acta Trop. 2002;81(2):151–7.

    Article  CAS  Google Scholar 

  10. Yu BG, Okano T, Kataoka K, Sardari S, Kwon GS. In vitro dissociation of antifungal efficacy and toxicity for amphotericin B-loaded poly(ethylene oxide)-block-poly(beta benzyl L aspartate) micelles. J Control Release. 1998;56(1–3):285–91.

    Article  CAS  Google Scholar 

  11. Wong-Beringer A, Jacobs RA, Guglielmo BJ. Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis. 1998;27(3):603–18.

    Article  CAS  Google Scholar 

  12. Espuelas MS, Legrand P, Irache JM, Gamazo C, Orecchioni AM, Devissaguet JP, et al. Poly(e-caprolacton) nanospheres as an alternative way to reduce amphotericin B toxicity. Int J Pharm. 1997;158(1):19–27.

    Article  CAS  Google Scholar 

  13. Alvarez C, Shin DH, Kwon GS. Reformulation of Fungizone by PEG-DSPE micelles: deaggregation and detoxification of amphotericin B. Pharm Res. 2016;33(9):2098–106. https://doi.org/10.1007/s11095-016-1948-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stone NR, Bicanic T, Salim R, Hope W. Liposomal amphotericin B (AmBisome((R))): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 2016;76(4):485–500. https://doi.org/10.1007/s40265-016-0538-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–22. https://doi.org/10.1016/j.jconrel.2012.01.043.

    Article  CAS  PubMed  Google Scholar 

  16. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006;2(1):8–21.

    Article  CAS  Google Scholar 

  17. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55(3):329–47.

    Article  CAS  Google Scholar 

  18. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces. 2010;75(1):1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Z, Badkas A, Stevenson M, Lee JY, Leung YK. Herceptin conjugated PLGA-PHis-PEG pH sensitive nanoparticles for targeted and controlled drug delivery. Int J Pharm. 2015;487(1–2):81–90. https://doi.org/10.1016/j.ijpharm.2015.03.081.

    Article  CAS  PubMed  Google Scholar 

  20. Hudlikar MS, Li X, Gagarinov IA, Kolishetti N, Wolfert MA, Boons GJ. Controlled multi-functionalization facilitates targeted delivery of nanoparticles to cancer cells. Chemistry. 2016;22(4):1415–23. https://doi.org/10.1002/chem.201503999.

    Article  CAS  PubMed  Google Scholar 

  21. Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: a unique polymer for drug delivery. Ther Deliv. 2015;6(1):41–58.

    Article  CAS  Google Scholar 

  22. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–97.

    Article  CAS  Google Scholar 

  23. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev. 1999;99(11):3181–98.

    Article  CAS  Google Scholar 

  24. von Burkersroda F, Schedl L, Gopferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials. 2002;23(21):4221–31.

    Article  Google Scholar 

  25. Palma E, Pasqua A, Gagliardi A, Britti D, Fresta M, Cosco D. Antileishmanial activity of amphotericin B-loaded-PLGA nanoparticles: an overview. Materials 2018;11(7). doi:https://doi.org/10.3390/ma11071167.

  26. Kumar R, Sahoo GC, Pandey K, Das V, Das P. Study the effects of PLGA-PEG encapsulated amphotericin B nanoparticle drug delivery system against Leishmania donovani. Drug Deliv. 2015;22(3):383–8. https://doi.org/10.3109/10717544.2014.891271.

    Article  CAS  PubMed  Google Scholar 

  27. Butani D, Yewale C, Misra A. Amphotericin B topical microemulsion: formulation, characterization and evaluation. Colloids Surf B: Biointerfaces. 2014;116:351–8. https://doi.org/10.1016/j.colsurfb.2014.01.014.

    Article  CAS  PubMed  Google Scholar 

  28. Abu Ammar A, Raveendran R, Gibson D, Nassar T, Benita S. A lipophilic Pt(IV) oxaliplatin derivative enhances antitumor activity. J Med Chem. 2016;59(19):9035–46. https://doi.org/10.1021/acs.jmedchem.6b00955.

    Article  CAS  PubMed  Google Scholar 

  29. Ryczak J, Papini M, Lader A, Nasereddin A, Kopelyanskiy D, Preu L, et al. 2-Arylpaullones are selective antitrypanosomal agents. Eur J Med Chem. 2013;64:396–400. https://doi.org/10.1016/j.ejmech.2013.03.065.

    Article  CAS  PubMed  Google Scholar 

  30. Shimony O, Jaffe CL. Rapid fluorescent assay for screening drugs on Leishmania amastigotes. J Microbiol Methods. 2008;75(2):196–200. https://doi.org/10.1016/j.mimet.2008.05.026.

    Article  CAS  PubMed  Google Scholar 

  31. Keurulainen L, Siiskonen A, Nasereddin A, Kopelyanskiy D, Sacerdoti-Sierra N, Leino TO, et al. Synthesis and biological evaluation of 2-arylbenzimidazoles targeting Leishmania donovani. Bioorg Med Chem Lett. 2015;25(9):1933–7. https://doi.org/10.1016/j.bmcl.2015.03.027.

    Article  CAS  PubMed  Google Scholar 

  32. Haavikko R, Nasereddin A, Sacerdoti-Sierra N, Kopelyanskiy D, Alakurtti S, Tikka M, et al. Heterocycle-fused lupane triterpenoids inhibit Leishmania donovani amastigotes. MedChemComm. 2014;5(4):445–51.

    Article  CAS  Google Scholar 

  33. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(1):R1–4.

    Article  CAS  Google Scholar 

  34. Van de Ven H, Paulussen C, Feijens PB, Matheeussen A, Rombaut P, Kayaert P, et al. PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to Fungizone and AmBisome. J Control Release. 2012;161(3):795–803. https://doi.org/10.1016/j.jconrel.2012.05.037.

    Article  PubMed  Google Scholar 

  35. Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110–1.

    CAS  PubMed  Google Scholar 

  36. Van de Ven H, Paulussen C, Feijens P, Matheeussen A, Rombaut P, Kayaert P, et al. PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to Fungizone and AmBisome. J Control Release. 2012;161(3):795–803.

    Article  Google Scholar 

  37. Carraro TCMM, Khalil NM, Mainardes RM. Amphotericin B-loaded polymeric nanoparticles: formulation optimization by factorial design. Pharm Dev Technol. 2016;21(2):140–6.

    Article  CAS  Google Scholar 

  38. Nahar M, Mishra D, Dubey V, Jain N, editors. Development of amphotericin b loaded PLGA nanoparticles for effective treatment of visceral leishmaniasis. 13th International Conference on Biomedical Engineering; 2009: Springer

  39. Barwicz J, Christian S, Gruda I. Effects of the aggregation state of amphotericin B on its toxicity to mice. Antimicrob Agents Chemother. 1992;36(10):2310–5.

    Article  CAS  Google Scholar 

  40. Wang Y, Ke X, Voo ZX, Yap SS, Yang C, Gao S, et al. Biodegradable functional polycarbonate micelles for controlled release of amphotericin B. Acta Biomater. 2016;46:211–20. https://doi.org/10.1016/j.actbio.2016.09.036.

    Article  CAS  PubMed  Google Scholar 

  41. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—a review. Int J Pharm. 2011;415(1–2):34–52. https://doi.org/10.1016/j.ijpharm.2011.05.049.

    Article  CAS  Google Scholar 

  42. Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T, et al. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 1982;42(4):1530–6.

    CAS  PubMed  Google Scholar 

  43. Grabowski N, Hillaireau H, Vergnaud J, Tsapis N, Pallardy M, Kerdine-Romer S, et al. Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages. Int J Pharm. 2015;482(1–2):75–83. https://doi.org/10.1016/j.ijpharm.2014.11.042.

    Article  CAS  PubMed  Google Scholar 

  44. Guedj AS, Kell AJ, Barnes M, Stals S, Goncalves D, Girard D, et al. Preparation, characterization, and safety evaluation of poly(lactide-co-glycolide) nanoparticles for protein delivery into macrophages. Int J Nanomedicine. 2015;10:5965–79. https://doi.org/10.2147/IJN.S82205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abamor ES. Antileishmanial activities of caffeic acid phenethyl ester loaded PLGA nanoparticles against Leishmania infantum promastigotes and amastigotes in vitro. Asian Pac J Trop Med. 2017;10(1):25–34. https://doi.org/10.1016/j.apjtm.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

  46. Italia JL, Yahya MM, Singh D, Ravi Kumar MN. Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone. Pharm Res. 2009;26(6):1324–31. https://doi.org/10.1007/s11095-009-9841-2.

    Article  CAS  PubMed  Google Scholar 

  47. Radwan MA, AlQuadeib BT, Siller L, Wright MC, Horrocks B. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats. Drug Deliv. 2017;24(1):40–50. https://doi.org/10.1080/10717544.2016.1228715.

    Article  CAS  PubMed  Google Scholar 

  48. Sundar S, Mehta H, Suresh AV, Singh SP, Rai M, Murray HW. Amphotericin B treatment for Indian visceral leishmaniasis: conventional versus lipid formulations. Clin Infect Dis. 2004;38(3):377–83. https://doi.org/10.1086/380971.

    Article  CAS  PubMed  Google Scholar 

  49. Yardley V, Croft SL. A comparison of the activities of three amphotericin B lipid formulations against experimental visceral and cutaneous leishmaniasis. Int J Antimicrob Agents. 2000;13(4):243–8.

    Article  CAS  Google Scholar 

  50. de Carvalho RF, Ribeiro IF, Miranda-Vilela AL, de Souza Filho J, Martins OP, Cintra e Silva Dde O, et al. Leishmanicidal activity of amphotericin B encapsulated in PLGA–DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice. Exp Parasitol. 2013;135(2):217–22.

    Article  Google Scholar 

  51. Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet. 2018;392(10151):951–70. https://doi.org/10.1016/S0140-6736(18)31204-2.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the GIP program of the Deutsche Forschungsgemeinschaft (DFG) German Research Foundation. EZ wish to acknowledge the financial support of the RBNI-The Russell Berrie Nanotechnology Institute at the Technion. CLJ holds the Michael and Penny Feiwel Chair of Dermatology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiman Abu Ammar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Ammar, A., Nasereddin, A., Ereqat, S. et al. Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Drug Deliv. and Transl. Res. 9, 76–84 (2019). https://doi.org/10.1007/s13346-018-00603-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-018-00603-0

Keywords

Navigation