Skip to main content

Advertisement

Log in

Twin-screw extrusion of sustained-release oral dosage forms and medical implants

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Most of published reviews of twin-screw extrusion focused on its application for enhancing the bioavailability of amorphous solid dispersions while few of them focused on its use for manufacturing sustained-release oral dosage forms and medical implants, despite the considerable interest and success this process has garnered both in academia and in the pharmaceutical industry. Compared to conventional batch processing, twin-screw extrusion offers the advantages of continuous processing and the ability to prepare oral dosage forms and medical implants that have unique physicochemical and drug release attributes. This review provides an in-depth analysis of the formulation composition and processing conditions of twin-screw extrusion and how these factors affect the drug release properties of sustained-release dosage forms. This review also illustrates the unique advantages of this process by presenting case studies of a wide variety of commercial sustained-release products manufactured using twin-screw extrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mohr W, Saxton R, Jepson C. Theory of mixing in the single-screw extruder. Ind Eng Chem. 1957;49(11):1857–62. https://doi.org/10.1021/ie50575a031.

    Article  CAS  Google Scholar 

  2. El-Egakey MA, Soliva M, Speiser P. Hot extruded dosage forms. I. Technology and dissolution kinetics of polymeric matrices. Pharm Acta Helv. 1971;46(1):31–52.

    CAS  PubMed  Google Scholar 

  3. Ghebre-Sellassie I, Reisch R, Parikh R, Fazwi MB, Nesbitt RU, inventors; WarnerLambert Company, assignee. Solid Pharmaceutical Dispersions Patent 6,677,362. 2004.

  4. Breitenbach J. Melt extrusion can bring new benefits to HIV therapy. Am J Drug Deliv. 2006;4(2):61–4. https://doi.org/10.2165/00137696-200604020-00001.

    Article  CAS  Google Scholar 

  5. Klein CE, Chiu YL, Awni W, Zhu T, Heuser RS, Doan T, et al. The tablet formulation of lopinavir/ritonavir provides similar bioavailability to the soft-gelatin capsule formulation with less pharmacokinetic variability and diminished food effect. Jaids-J Acquir Immune Defic Syndr. 2007;44(4):401–10.

    Article  CAS  Google Scholar 

  6. Singh R, Ierapetritou M, Ramachandran R. System-wide hybrid MPC-PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction. Eur J Pharm Biopharm. 2013;85(3 Pt B):1164–82.

    Article  CAS  PubMed  Google Scholar 

  7. Gryczke A, Schminke S, Maniruzzaman M, Beck J, Douroumis D. Development and evaluation of orally disintegrating tablets (ODTs) containing ibuprofen granules prepared by hot melt extrusion. Colloids Surf B: Biointerfaces. 2011;86(2):275–84. https://doi.org/10.1016/j.colsurfb.2011.04.007.

    Article  CAS  PubMed  Google Scholar 

  8. Follonier N, Doelker E, Cole E. Evaluation of hot-melt extrusion as a new technique for the production of polymer-based pellets for sustained-release capsules containing high loading of freely water soluble drugs. Drug Dev Ind Pharm. 1994;20(8):1323–39. https://doi.org/10.3109/03639049409038373.

    Article  CAS  Google Scholar 

  9. Alshetaili AS, Almutairy BK, Alshahrani SM, Ashour EA, Tiwari RV, Alshehri SM, et al. Optimization of hot melt extrusion parameters for sphericity and hardness of polymeric face-cut pellets. Drug Dev Ind Pharm. 2016;42(11):1833–41. https://doi.org/10.1080/03639045.2016.1178769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alshetaili AS, Almutairy BK, Tiwari RV, Morott JT, Alshehri SM, Feng X, et al. Preparation and evaluation of hot-melt extruded patient-centric ketoprofen mini-tablets. Curr Drug Deliv. 2016;13(5):730–41. https://doi.org/10.2174/1567201812666151012113806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Brabander C, Vervaet C, Fiermans L, Remon JP. Matrix mini-tablets based on starch/microcrystalline wax mixtures. Int J Pharm. 2000;199(2):195–203. https://doi.org/10.1016/S0378-5173(00)00383-5.

    Article  PubMed  Google Scholar 

  12. Zhang F, McGinity JW. Properties of sustained-release tablets prepared by hot-melt extrusion. Pharm Dev Technol. 1999;4(2):241–50. https://doi.org/10.1081/PDT-100101358.

    Article  CAS  PubMed  Google Scholar 

  13. Pimparade MB, Vo A, Maurya AS, Bae J, Morott JT, Feng X, et al. Development and evaluation of an oral fast disintegrating anti-allergic film using hot-melt extrusion technology. Eur J Pharm Biopharm. 2017;119:81–90. https://doi.org/10.1016/j.ejpb.2017.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ghalanbor Z, Korber M, Bodmeier R. Protein release from poly(lactide-co-glycolide) implants prepared by hot-melt extrusion: thioester formation as a reason for incomplete release. Int J Pharm. 2012;438(1–2):302–6. https://doi.org/10.1016/j.ijpharm.2012.09.015.

    Article  CAS  PubMed  Google Scholar 

  15. Meuser F, Gimmler N, Van Lengerich B. A systems analytical approach to extrusion. In: Ho CTH, Karwe MV, Kokini JL, editors. Food extrusion science and technology. New York: Marcel Dekker; 1992. p. 619–30.

    Google Scholar 

  16. Sun CC. Decoding powder tabletability: roles of particle adhesion and plasticity. J Adhes Sci Technol. 2011;25(4–5):483–99. https://doi.org/10.1163/016942410X525678.

    Article  CAS  Google Scholar 

  17. Almeida A, Possemiers S, Boone MN, De Beer T, Quinten T, Van Hoorebeke L, et al. Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion. Eur J Pharm Biopharm. 2011;77(2):297–305. https://doi.org/10.1016/j.ejpb.2010.12.004.

    Article  CAS  PubMed  Google Scholar 

  18. Claeys B, Vervaeck A, Hillewaere XKD, Possemiers S, Hansen L, De Beer T, et al. Thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding. Eur J Pharm Biopharm. 2015;90:44–52. https://doi.org/10.1016/j.ejpb.2014.11.003.

    Article  CAS  PubMed  Google Scholar 

  19. Aoki H, Iwao Y, Uchimoto T, Noguchi S, Kajihara R, Takahashi K, et al. Fine granules showing sustained drug release prepared by high-shear melt granulation using triglycerin full behenate and milled microcrystalline cellulose. Int J Pharm. 2015;478(2):530–9. https://doi.org/10.1016/j.ijpharm.2014.11.058.

    Article  CAS  PubMed  Google Scholar 

  20. Aoki H, Iwao Y, Mizoguchi M, Noguchi S, Itai S. Clarithromycin highly-loaded gastro-floating fine granules prepared by high-shear melt granulation can enhance the efficacy of helicobacter pylori eradication. Eur J Pharm Biopharm. 2015;92:22–7. https://doi.org/10.1016/j.ejpb.2015.02.012.

    Article  CAS  PubMed  Google Scholar 

  21. Carley JF. Fundamentals of melt rheology, heat generation, and heat transfer as applied to polymer processing. Polym Eng Sci. 1966;6(2):158–68. https://doi.org/10.1002/pen.760060213.

    Article  CAS  Google Scholar 

  22. Schaefer T, Holm P, Kristensen H. Melt granulation in a laboratory scale high shear mixer. Drug Dev Ind Pharm. 1990;16(8):1249–77. https://doi.org/10.3109/03639049009115960.

    Article  CAS  Google Scholar 

  23. Passerini N, Calogerà G, Albertini B, Rodriguez L. Melt granulation of pharmaceutical powders: a comparison of high-shear mixer and fluidised bed processes. Int J Pharm. 2010;391(1):177–86. https://doi.org/10.1016/j.ijpharm.2010.03.013.

    Article  CAS  PubMed  Google Scholar 

  24. Liu JP, Zhang F, McGinity JW. Properties of lipophilic matrix tablets containing phenylpropanolamine hydrochloride prepared by hot-melt extrusion. Eur J Pharm Biopharm. 2001;52(2):181–90. https://doi.org/10.1016/S0939-6411(01)00162-X.

    Article  CAS  PubMed  Google Scholar 

  25. Reitz C, Kleinebudde P. Solid lipid extrusion of sustained release dosage forms. Eur J Pharm Biopharm. 2007;67(2):440–8. https://doi.org/10.1016/j.ejpb.2007.03.008.

    Article  CAS  PubMed  Google Scholar 

  26. Hasa D, Perissutti B, Grassi M, Zacchigna M, Pagotto M, Lenaz D, et al. Melt extruded helical waxy matrices as a new sustained drug delivery system. Eur J Pharm Biopharm. 2011;79(3):592–600. https://doi.org/10.1016/j.ejpb.2011.07.012.

    Article  CAS  PubMed  Google Scholar 

  27. Roblegg E, Jager E, Hodzic A, Koscher G, Mohr S, Zimmer A, et al. Development of sustained-release lipophilic calcium stearate pellets via hot melt extrusion. Eur J Pharm Biopharm. 2011;79(3):635–45. https://doi.org/10.1016/j.ejpb.2011.07.004.

    Article  CAS  PubMed  Google Scholar 

  28. Sax G, Winter G. Mechanistic studies on the release of lysozyme from twin-screw extruded lipid implants. J Control Release. 2012;163(2):187–94. https://doi.org/10.1016/j.jconrel.2012.08.025.

    Article  CAS  PubMed  Google Scholar 

  29. Tan DC, Chin WW, Tan EH, Hong S, Gu W, Gokhale R. Effect of binders on the release rates of direct molded verapamil tablets using twin-screw extruder in melt granulation. Int J Pharm. 2014;463(1):89–97. https://doi.org/10.1016/j.ijpharm.2013.12.053.

    Article  CAS  PubMed  Google Scholar 

  30. Vithani K, Cuppok Y, Mostafa S, Slipper IJ, Snowden MJ, Douroumis D. Diclofenac sodium sustained release hot melt extruded lipid matrices. Pharm Dev Technol. 2014;19(5):531–8. https://doi.org/10.3109/10837450.2013.805775.

    Article  CAS  PubMed  Google Scholar 

  31. Patil H, Tiwari RV, Upadhye SB, Vladyka RS, Repka MA. Formulation and development of pH-independent/dependent sustained release matrix tablets of ondansetron HCl by a continuous twin-screw melt granulation process. Int J Pharm. 2015;496(1):33–41. https://doi.org/10.1016/j.ijpharm.2015.04.009.

    Article  CAS  PubMed  Google Scholar 

  32. Laukamp EJ, Vynckier AK, Voorspoels J, Thommes M, Breitkreutz J. Development of sustained and dual drug release co-extrusion formulations for individual dosing. Eur J Pharm Biopharm. 2015;89:357–64. https://doi.org/10.1016/j.ejpb.2014.12.027.

    Article  CAS  PubMed  Google Scholar 

  33. Monteyne T, Adriaensens P, Brouckaert D, Remon JP, Vervaet C, De Beer T. Stearic acid and high molecular weight PEO as matrix for the highly water soluble metoprolol tartrate in continuous twin-screw melt granulation. Int J Pharm. 2016;512(1):158–67. https://doi.org/10.1016/j.ijpharm.2016.07.035.

    Article  CAS  PubMed  Google Scholar 

  34. Vaingankar P, Amin P. Continuous melt granulation to develop high drug loaded sustained release tablet of metformin HCl. Asian J Pharm Sci. 2017;12(1):37–50. https://doi.org/10.1016/j.ajps.2016.08.005.

    Article  PubMed  Google Scholar 

  35. Vithani K, Maniruzzaman M, Slipper IJ, Mostafa S, Miolane C, Cuppok Y, et al. Sustained release solid lipid matrices processed by hot-melt extrusion (HME). Colloids Surf B Biointerfaces. 2013;110:403–10. https://doi.org/10.1016/j.colsurfb.2013.03.060.

    Article  CAS  PubMed  Google Scholar 

  36. Nart V, Beringhs AO, Franca MT, de Espindola B, Pezzini BR, Stulzer HK. Carnauba wax as a promising excipient in melt granulation targeting the preparation of mini-tablets for sustained release of highly soluble drugs. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):250–7. https://doi.org/10.1016/j.msec.2016.07.070.

    Article  CAS  PubMed  Google Scholar 

  37. Vynckier AK, Lin H, Zeitler JA, Willart JF, Bongaers E, Voorspoels J, et al. Calendering as a direct shaping tool for the continuous production of fixed-dose combination products via co-extrusion. Eur J Pharm Biopharm. 2015;96:125–31. https://doi.org/10.1016/j.ejpb.2015.07.023.

    Article  CAS  PubMed  Google Scholar 

  38. Vanhoorne V, Vanbillemont B, Vercruysse J, De Leersnyder F, Gomes P, Beer TD, et al. Development of a controlled release formulation by continuous twin screw granulation: influence of process and formulation parameters. Int J Pharm. 2016;505(1–2):61–8. https://doi.org/10.1016/j.ijpharm.2016.03.058.

    Article  CAS  PubMed  Google Scholar 

  39. Shergill M, Patel M, Khan S, Bashir A, McConville C. Development and characterisation of sustained release solid dispersion oral tablets containing the poorly water soluble drug disulfiram. Int J Pharm. 2016;497(1–2):3–11. https://doi.org/10.1016/j.ijpharm.2015.11.029.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang F, McGinity JW. Properties of hot-melt extruded theophylline tablets containing poly(vinyl acetate). Drug Dev Ind Pharm. 2000;26(9):931–42. https://doi.org/10.1081/DDC-100101320.

    Article  CAS  PubMed  Google Scholar 

  41. Sarraf AG, Cherkaoui S, Jordan O, Gurny R, Doelker E. Controlled drug release from melt-extrudates through processing parameters: a chemometric approach. Int J Pharm. 2015;481(1–2):9–17. https://doi.org/10.1016/j.ijpharm.2014.12.046.

    Article  CAS  PubMed  Google Scholar 

  42. Zhu Y, Shah NH, Malick AW, Infeld MH, McGinity JW. Controlled release of a poorly water-soluble drug from hot-melt extrudates containing acrylic polymers. Drug Dev Ind Pharm. 2006;32(5):569–83. https://doi.org/10.1080/03639040500528996.

    Article  CAS  PubMed  Google Scholar 

  43. Quinten T, Andrews GP, De Beer T, Saerens L, Bouquet W, Jones DS, et al. Preparation and evaluation of sustained-release matrix tablets based on metoprolol and an acrylic carrier using injection moulding. AAPS PharmSciTech. 2012;13(4):1197–211. https://doi.org/10.1208/s12249-012-9848-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bouman J, Belton P, Venema P, van der Linden E, de Vries R, Qi S. Controlled release from zein matrices: interplay of drug hydrophobicity and pH. Pharm Res. 2016;33(3):673–85. https://doi.org/10.1007/s11095-015-1818-8.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang F. Physicochemical properties and mechanisms of drug release from melt-extruded granules consisting of chlorpheniramine maleate and Eudragit FS. Drug Dev Ind Pharm. 2016;42(4):563–71. https://doi.org/10.3109/03639045.2015.1054832.

    Article  CAS  PubMed  Google Scholar 

  46. Ravina-Eirin E, Sanchez-Rodriguez B, Gomez-Amoza JL, Martinez-Pacheco R. Evaluation of the hyperbranched polymer Hybrane H1500 for production of matricial controlled-release particles by hot-melt extrusion. Int J Pharm. 2014;461(1–2):469–77. https://doi.org/10.1016/j.ijpharm.2013.12.019.

    Article  CAS  PubMed  Google Scholar 

  47. Henrist D, Lefebvre RA, Remon JP. Bioavailability of starch based hot stage extrusion formulations. Int J Pharm. 1999;187(2):185–91. https://doi.org/10.1016/S0378-5173(99)00186-6.

    Article  CAS  PubMed  Google Scholar 

  48. Vaz CM, van Doeveren P, Reis RL, Cunha AM. Soy matrix drug delivery systems obtained by melt-processing techniques. Biomacromolecules. 2003;4(6):1520–9. https://doi.org/10.1021/bm034050i.

    Article  CAS  PubMed  Google Scholar 

  49. Bouman J, Belton P, Venema P, van der Linden E, de Vries R, Qi S. The development of direct extrusion-injection moulded zein matrices as novel oral controlled drug delivery systems. Pharm Res. 2015;32(8):2775–86. https://doi.org/10.1007/s11095-015-1663-9.

    Article  CAS  PubMed  Google Scholar 

  50. Ma DC, Djemai A, Gendron CM, Xi HM, Smith M, Kogan J, et al. Development of a HPMC-based controlled release formulation with hot melt extrusion (HME). Drug Dev Ind Pharm. 2013;39(7):1070–83. https://doi.org/10.3109/03639045.2012.702350.

    Article  CAS  PubMed  Google Scholar 

  51. Liu X, Lu M, Guo Z, Huang L, Feng X, Wu C. Improving the chemical stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion. Pharm Res. 2012;29(3):806–17. https://doi.org/10.1007/s11095-011-0605-4.

    Article  CAS  PubMed  Google Scholar 

  52. Almeida A, Brabant L, Siepmann F, De Beer T, Bouquet W, Van Hoorebeke L, et al. Sustained release from hot-melt extruded matrices based on ethylene vinyl acetate and polyethylene oxide. Eur J Pharm Biopharm. 2012;82(3):526–33. https://doi.org/10.1016/j.ejpb.2012.08.008.

    Article  CAS  PubMed  Google Scholar 

  53. Quinten T, De Beer T, Onofre FO, Mendez-Montealvo G, Wang YJ, Remon JP, et al. Sustained-release and swelling characteristics of xanthan gum/ethylcellulose-based injection moulded matrix tablets: in vitro and in vivo evaluation. J Pharm Sci. 2011;100(7):2858–70. https://doi.org/10.1002/jps.22480.

    Article  CAS  PubMed  Google Scholar 

  54. Quinten T, Gonnissen Y, Adriaens E, De Beer T, Cnudde V, Masschaele B, et al. Development of injection moulded matrix tablets based on mixtures of ethylcellulose and low-substituted hydroxypropylcellulose. Eur J Pharm Sci. 2009;37(3–4):207–16. https://doi.org/10.1016/j.ejps.2009.02.006.

    Article  CAS  PubMed  Google Scholar 

  55. Feng X, Vo A, Patil H, Tiwari RV, Alshetaili AS, Pimparade MB, et al. The effects of polymer carrier, hot melt extrusion process and downstream processing parameters on the moisture sorption properties of amorphous solid dispersions. J Pharm Pharmacol. 2016;68(5):692–704. https://doi.org/10.1111/jphp.12488.

    Article  CAS  PubMed  Google Scholar 

  56. Crowley MM, Schroeder B, Fredersdorf A, Obara S, Talarico M, Kucera S, et al. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int J Pharm. 2004;269(2):509–22. https://doi.org/10.1016/j.ijpharm.2003.09.037.

    Article  CAS  PubMed  Google Scholar 

  57. Feng X, Ye X, Park J-B, Lu W, Morott J, Beissner B, et al. Evaluation of the recrystallization kinetics of hot-melt extruded polymeric solid dispersions using an improved Avrami equation. Drug Dev Ind Pharm. 2015;41(9):1479–87. https://doi.org/10.3109/03639045.2014.958755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Keen JM, Hughey JR, Bennett RC, Jannin V, Rosiaux Y, Marchaud D, et al. Effect of tablet structure on controlled release from supersaturating solid dispersions containing glyceryl behenate. Mol Pharm. 2015;12(1):120–6. https://doi.org/10.1021/mp500480y.

    Article  CAS  PubMed  Google Scholar 

  59. Vo AQ, Feng X, Morott JT, Pimparade MB, Tiwari RV, Zhang F, et al. A novel floating controlled release drug delivery system prepared by hot-melt extrusion. Eur J Pharm Biopharm. 2016;98:108–21. https://doi.org/10.1016/j.ejpb.2015.11.015.

    Article  CAS  PubMed  Google Scholar 

  60. Vo AQ, Feng X, Pimparade M, Ye X, Kim DW, Martin ST, et al. Dual-mechanism gastroretentive drug delivery system loaded with an amorphous solid dispersion prepared by hot-melt extrusion. Eur J Pharm Sci. 2017;102:71–84. https://doi.org/10.1016/j.ejps.2017.02.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fukuda M, Peppas NA, McGinity JW. Floating hot-melt extruded tablets for gastroretentive controlled drug release system. J Control Release. 2006;115(2):121–9. https://doi.org/10.1016/j.jconrel.2006.07.018.

    Article  CAS  PubMed  Google Scholar 

  62. Nakamichi K, Yasuura H, Fukui H, Oka M, Izumi S. Evaluation of a floating dosage form of nicardipine hydrochloride and hydroxypropylmethylcellulose acetate succinate prepared using a twin-screw extruder. Int J Pharm. 2001;218(1–2):103–12. https://doi.org/10.1016/S0378-5173(01)00617-2.

    Article  CAS  PubMed  Google Scholar 

  63. Liu X, Feng X, Williams RO, Zhang F. Characterization of amorphous solid dispersions. J Pharm Investig. 2017:1–23.

  64. Liu X, Zhou L, Zhang F. Reactive melt extrusion to improve the dissolution performance and physical stability of naproxen amorphous solid dispersions. Mol Pharm. 2017;14(3):658–73. https://doi.org/10.1021/acs.molpharmaceut.6b00960.

    Article  CAS  PubMed  Google Scholar 

  65. Quinten T, De Beer T, Almeida A, Vlassenbroeck J, Van Hoorebeke L, Remon JP, et al. Development and evaluation of injection-molded sustained-release tablets containing ethylcellulose and polyethylene oxide. Drug Dev Ind Pharm. 2011;37(2):149–59. https://doi.org/10.3109/03639045.2010.498426.

    Article  CAS  PubMed  Google Scholar 

  66. Roth W, Setnik B, Zietsch M, Burst A, Breitenbach J, Sellers E, et al. Ethanol effects on drug release from verapamil Meltrex (R), an innovative melt extruded formulation. Int J Pharm. 2009;368(1–2):72–5. https://doi.org/10.1016/j.ijpharm.2008.09.052.

    Article  CAS  PubMed  Google Scholar 

  67. Kipping T, Rein HA. New method for the continuous production of single dosed controlled release matrix systems based on hot-melt extruded starch: analysis of relevant process parameters and implementation of an in-process control. Eur J Pharm Biopharm. 2013;84(1):156–71. https://doi.org/10.1016/j.ejpb.2012.12.013.

    Article  CAS  PubMed  Google Scholar 

  68. Vynckier AK, Dierickx L, Saerens L, Voorspoels J, Gonnissen Y, De Beer T, et al. Hot-melt co-extrusion for the production of fixed-dose combination products with a controlled release ethylcellulose matrix core. Int J Pharm. 2014;464(1–2):65–74. https://doi.org/10.1016/j.ijpharm.2014.01.028.

    Article  CAS  PubMed  Google Scholar 

  69. Zema L, Melocchi A, Maroni A, Gazzaniga A. Three-dimensional printing of medicinal products and the challenge of personalized therapy. J Pharm Sci. 2017;106(7):1697–705. https://doi.org/10.1016/j.xphs.2017.03.021.

    Article  CAS  PubMed  Google Scholar 

  70. Crump SS. Apparatus and method for creating three-dimensional objects. Google Patents; 1992.

    Google Scholar 

  71. O’Connor TF, LX Y, Lee SL. Emerging technology: a key enabler for modernizing pharmaceutical manufacturing and advancing product quality. Int J Pharm. 2016;509(1–2):492–8. https://doi.org/10.1016/j.ijpharm.2016.05.058.

    Article  CAS  PubMed  Google Scholar 

  72. Patil H, Feng X, Ye X, Majumdar S, Repka MA. Continuous production of fenofibrate solid lipid nanoparticles by hot-melt extrusion technology: a systematic study based on a quality by design approach. AAPS J. 2015;17(1):194–205. https://doi.org/10.1208/s12248-014-9674-8.

    Article  CAS  PubMed  Google Scholar 

  73. Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657–63. https://doi.org/10.1016/j.ijpharm.2015.04.069.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang J, Feng X, Patil H, Tiwari RV, Repka MA. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm. 2017;519(1–2):186–97. https://doi.org/10.1016/j.ijpharm.2016.12.049.

    Article  CAS  PubMed  Google Scholar 

  75. Goyanes A, Chang H, Sedough D, Hatton GB, Wang J, Buanz A, et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm. 2015;496(2):414–20. https://doi.org/10.1016/j.ijpharm.2015.10.039.

    Article  CAS  PubMed  Google Scholar 

  76. Goyanes A, Wang J, Buanz A, Martinez-Pacheco R, Telford R, Gaisford S, et al. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm. 2015;12(11):4077–84. https://doi.org/10.1021/acs.molpharmaceut.5b00510.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang J, Yang W, Vo AQ, Feng X, Ye X, Kim DW, et al. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: structure and drug release correlation. Carbohydr Polym. 2017;177:49–57. https://doi.org/10.1016/j.carbpol.2017.08.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–97. https://doi.org/10.3390/polym3031377.

    Article  CAS  PubMed  Google Scholar 

  79. Wang Y, Wen Q, Choi S. FDA’s regulatory science program for generic PLA/PLGA-based drug products. Am Pharm Rev. 2016;19(4):5–9.

    Google Scholar 

  80. Spada LT, Ghebremeskel AN, Robinson MR. Biodegradable alpha-2 agonist polymeric implants and therapeutic uses thereof. Google Patents; 2015.

  81. Ghebremeskel AN, Robinson MR. Prostamide-containing intraocular implants and methods of use thereof. Google Patents; 2016.

  82. Shiah JG, Bhagat R, Blanda WM, Nivaggioli T, Peng L, Chou D, et al. Ocular implant made by a double extrusion process US8034370. Google Patents; 2011.

  83. Shiah JG, Bhagat R, Blanda WM, Nivaggioli T, Peng L, Chou D, et al. Ocular implant made by a double extrusion process US8034366. Google Patents; 2011.

  84. Helbling IM, Ibarra JC, Luna JA. The optimization of an intravaginal ring releasing progesterone using a mathematical model. Pharm Res. 2014;31(3):795–808. https://doi.org/10.1007/s11095-013-1201-6.

    Article  CAS  PubMed  Google Scholar 

  85. Schneider C, Langer R, Loveday D, Hair D. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. J Control Release. 2017;262:284–95. https://doi.org/10.1016/j.jconrel.2017.08.004.

    Article  CAS  PubMed  Google Scholar 

  86. Kleiner LW, Wright JC, Wang Y. Evolution of implantable and insertable drug delivery systems. J Control Release. 2014;181:1–10. https://doi.org/10.1016/j.jconrel.2014.02.006.

    Article  CAS  PubMed  Google Scholar 

  87. JAHV L, MAB K, Vromans H. In vitro release properties of etonogestrel and ethinyl estradiol from a contraceptive vaginal ring. Int J Pharm. 2002;232:163–73.

    Article  Google Scholar 

  88. JAHV L, MAB K, Vromans H. Effect of supersaturation and crystallization phenomena on the release properties of a controlled release device based on EVA copolymer. J Control Release. 2002;82:309–19.

    Article  Google Scholar 

  89. Genina N, Holländer J, Jukarainen H, Mäkilä E, Salonen J, Sandler N. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur J Pharm Sci. 2016;90:53–63. https://doi.org/10.1016/j.ejps.2015.11.005.

    Article  CAS  PubMed  Google Scholar 

  90. Costantini LC. The development of ProNeura technology for the treatment of addictions. In: Dean RL, Bilsky EJ, Negus SS, editors. Opiate receptors and antagonists: from bench to clinic. Totowa: Humana Press; 2009. p. 689–708. https://doi.org/10.1007/978-1-59745-197-0_37.

    Chapter  Google Scholar 

  91. U.S. Food and Drug Administration. FDA approves first buprenorphine implant for treatment of opioid dependence. 2016.

  92. Patel R, Bucalo L. Implantable polymeric device for sustained release of buprenorphine. Google Patents; 2004.

  93. Patel RA, Bucalo LR. Implantable polymeric device for sustained release of buprenorphine with minimal initial burst. Google Patents; 2008.

  94. Patel R. Methods and device for treating opioid addiction. Google Patents; 2014.

  95. Bourges J, Bloquel C, Thomas A, Froussart F, Bochot A, Azan F, et al. Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev. 2006;58(11):1182–202. https://doi.org/10.1016/j.addr.2006.07.026.

    Article  CAS  PubMed  Google Scholar 

  96. Carcaboso ÁM, Chiappetta DA, Höcht C, Blake MG, Boccia MM, Baratti CM, et al. In vitro/in vivo characterization of melt-molded gabapentin-loaded poly (epsilon-caprolactone) implants for sustained release in animal studies. Eur J Pharm Biopharm. 2008;70(2):666–73. https://doi.org/10.1016/j.ejpb.2008.05.031.

    Article  CAS  PubMed  Google Scholar 

  97. Chen W, Wu Z, Yang H, Guo S, Li D, Cheng L. In vitro and in vivo evaluation of injectable implants for intratumoral delivery of 5-fluorouracil. Pharm Dev Technol. 2014;19(2):223–31. https://doi.org/10.3109/10837450.2013.769568.

    Article  CAS  PubMed  Google Scholar 

  98. Clark MR, Johnson TJ, Mccabe RT, Clark JT, Tuitupou A, Elgendy H, et al. A hot-melt extruded intravaginal ring for the sustained delivery of the antiretroviral microbicide UC781. J Pharm Sci. 2012;101(2):576–87. https://doi.org/10.1002/jps.22781.

    Article  CAS  PubMed  Google Scholar 

  99. Ward RS, Wang S, Li L, Chalasani D, Kiser P, Clark MR. Intravaginal ring comprising polyurethane composition for drug delivery. Google Patents; 2016.

  100. Zolnik BS, Burgess DJ. Effect of acidic pH on PLGA microsphere degradation and release. J Control Release. 2007;122(3):338–44. https://doi.org/10.1016/j.jconrel.2007.05.034.

    Article  CAS  PubMed  Google Scholar 

  101. Sivalingam G, Vijayalakshmi S, Madras G. Enzymatic and thermal degradation of poly (ε-caprolactone), poly (D, L-lactide), and their blends. Ind Eng Chem Res. 2004;43(24):7702–9. https://doi.org/10.1021/ie049589r.

    Article  CAS  Google Scholar 

  102. Kreye F, Siepmann F, Siepmann J. Lipid implants as drug delivery systems. Expert Opin Drug Deliv. 2008;5(3):291–307. https://doi.org/10.1517/17425247.5.3.291.

    Article  CAS  PubMed  Google Scholar 

  103. Kreye F, Siepmann F, Willart J, Descamps M, Siepmann J. Drug release mechanisms of cast lipid implants. Eur J Pharm Biopharm. 2011;78(3):394–400. https://doi.org/10.1016/j.ejpb.2011.02.011.

    Article  CAS  PubMed  Google Scholar 

  104. Kreye F, Siepmann F, Zimmer A, Willart JF, Descamps M, Siepmann J. Cast lipid implants for controlled drug delivery: importance of the tempering conditions. J Pharm Sci. 2011;100(8):3471–81. https://doi.org/10.1002/jps.22574.

    Article  CAS  PubMed  Google Scholar 

  105. Even MP, Young K, Winter G, Hook S, Engert J. In vivo investigation of twin-screw extruded lipid implants for vaccine delivery. Eur J Pharm Biopharm. 2014;87(2):338–46. https://doi.org/10.1016/j.ejpb.2014.02.014.

    Article  CAS  PubMed  Google Scholar 

  106. Even MP, Bobbala S, Kooi KL, Hook S, Winter G, Engert J. Impact of implant composition of twin-screw extruded lipid implants on the release behavior. Int J Pharm. 2015;493(1–2):102–10. https://doi.org/10.1016/j.ijpharm.2015.06.052.

    Article  CAS  PubMed  Google Scholar 

  107. Even M-P, Bobbala S, Gibson B, Hook S, Winter G, Engert J. Twin-screw extruded lipid implants containing TRP2 peptide for tumour therapy. Eur J Pharm Biopharm. 2017;114:79–87. https://doi.org/10.1016/j.ejpb.2016.12.033.

    Article  CAS  PubMed  Google Scholar 

  108. Vollrath M, Engert J, Winter G. Long-term release and stability of pharmaceutical proteins delivered from solid lipid implants. Eur J Pharm Biopharm. 2017;117:244–55. https://doi.org/10.1016/j.ejpb.2017.04.017.

    Article  CAS  PubMed  Google Scholar 

  109. Hagen TA, Lo JB, Thombre AG, Herbig SM, Appel LE, Crew MD, et al., inventors; Pfizer, Inc., assignee. Azithromycin dosage forms with reduced side effect. US patent 6,984,403. 2006.

  110. Ray RJ, Appel LE, Friesen DT, Crew MD, Schockey JR, inventors; Pfizer, Inc., assignee. Multiparticulate compositions with improved stability. US patent 7,736,672. 2010.

  111. Brady KT, McCauley JL, Back SE. Prescription opioid misuse, abuse, and treatment in the United States: an update. Am J Psychiatry. 2016;173(1):18–26. https://doi.org/10.1176/appi.ajp.2015.15020262.

    Article  PubMed  Google Scholar 

  112. Bartholomaeus JH, Schwier S, Brett M, Stahlberg H-J, Galia E, Strothmann K. New abuse deterrent formulation technology for immediate-release opioids. Drug Dev Deliv. 2013;13(8):76–81.

    CAS  Google Scholar 

  113. Rahman Z, Yang Y, Korang-Yeboah M, Siddiqui A, Xu X, Ashraf M, et al. Assessing impact of formulation and process variables on in-vitro performance of directly compressed abuse deterrent formulations. Int J Pharm. 2016;502(1):138–50. https://doi.org/10.1016/j.ijpharm.2016.02.029.

    Article  CAS  PubMed  Google Scholar 

  114. Bartholomaeus JH, Arkenau-Maric E, Galia E. Opioid extended-release tablets with improved tamper-resistant properties. Expert Opin Drug Deliv. 2012;9(8):879–91. https://doi.org/10.1517/17425247.2012.698606.

    Article  CAS  PubMed  Google Scholar 

  115. Oshlack B, Chasin M, Huang H-P, inventors; Euro-Celtique, S.A., assignee. Extruded orally administrable opioid formulations. US patent 5,958,452. 1999.

  116. Walden M, Nicholls FA, Smith KJ, Tucker GT. The effect of ethanol on the release of opioids from oral prolonged-release preparations. Drug Dev Ind Pharm. 2007;33(10):1101–11. https://doi.org/10.1080/03639040701377292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Groenewegen RJJ. Drug delivery system for two or more active substances. Google Patents; 1999.

  118. Hv L, Veurink J, Kruft M-A, Vromans H. Influence of spinline stress on release properties of a coaxial controlled release device based on EVA polymers. Pharm Res. 2004;21(10):1811–7.

    Article  Google Scholar 

  119. Loreti G, Maroni A, Del Curto MD, Melocchi A, Gazzaniga A, Zema L. Evaluation of hot-melt extrusion technique in the preparation of HPC matrices for prolonged release. Eur J Pharm Sci. 2014;52:77–85. https://doi.org/10.1016/j.ejps.2013.10.014.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Zhang, F. Twin-screw extrusion of sustained-release oral dosage forms and medical implants. Drug Deliv. and Transl. Res. 8, 1694–1713 (2018). https://doi.org/10.1007/s13346-017-0461-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0461-9

Keywords

Navigation