Skip to main content

Finding key nanoprecipitation variables for achieving uniform polymeric nanoparticles using neurofuzzy logic technology

Abstract

Nanoprecipitation is a simple and fast method to produce polymeric nanoparticles (Np); however, most applications require filtration or another separation technique to isolate the nanosuspension from aggregates or polydisperse particle production. In order to avoid variability introduced by these additional steps, we report here a systematic study of the process to yield monomodal and uniform Np production with the nanoprecipitation method. To further identify key variables and their interactions, we used artificial neural networks (ANN) to investigate the multiple variables which influence the process. In this work, a polymethacrylate derivative was used for Np (NpERS) and a database with several formulations and conditions was developed for the ANN model. The resulting ANN model had a high predictability (> 70%) for NpERS characteristics measured (mean size, PDI, zeta potential, and number of particle populations). Moreover, the model identified production variables leading to polymer supersaturation, such as mixing time and turbulence, as key in achieving monomodal and uniform NpERS in one production step. Polymer concentration and type of solvent, modifiers of polymer diffusion and supersaturation, were also shown to control NpERS characteristics. The ANN study allowed the identification of key variables and their interactions and resulted in a predictive model to study the NpERS production by nanoprecipitation. In turn, we have achieved an optimized method to yield uniform NpERS which could pave way for polymeric nanoparticle production methods with potential in biological and drug delivery applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bunjes H. Lipid nanoparticles for the delivery of poorly water-soluble drugs. J Pharm Pharmacol. 2010;62(11):1637–45. https://doi.org/10.1111/j.2042-7158.2010.01024.x.

    CAS  Article  PubMed  Google Scholar 

  2. Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm. 2004;284(1–2):109–22. https://doi.org/10.1016/j.ijpharm.2004.07.019.

    CAS  Article  PubMed  Google Scholar 

  3. A. Kumar, H. M. Mansour, A. Friedman and E. R. Blough, Nanomedicine in drug delivery, CRC, 2013, doi: https://doi.org/10.1201/b14802.

  4. Merisko-Liversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol. 2008;36(1):43–8. https://doi.org/10.1177/0192623307310946.

    CAS  Article  PubMed  Google Scholar 

  5. M. M. de Villiers, P. Aramwit and G. S. Kwon, Nanotechnology in drug delivery. Springer, 2008.

  6. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(1):R1–4. https://doi.org/10.1016/0378-5173(89)90281-0.

    CAS  Article  Google Scholar 

  7. Lepeltier E, Bourgaux C, Couvreur P. Nanoprecipitation and the “Ouzo effect”: application to drug delivery devices. Adv Drug Deliv Rev. 2014;71:86–97. https://doi.org/10.1016/j.addr.2013.12.009.

    CAS  Article  PubMed  Google Scholar 

  8. Schubert S, Joseph J, Delaney T, Schubert US. Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid). Soft Matter. 2011;7(5):1581–8. https://doi.org/10.1039/C0SM00862A.

    CAS  Article  Google Scholar 

  9. Baby T, Liu Y, Middelberg APJ, Zhao C-X. Fundamental studies on throughput capacities of hydrodynamic flow-focusing microfluidics for producing monodisperse polymer nanoparticles. Chem Eng Sci. 2017;169:128–39. https://doi.org/10.1016/j.ces.2017.04.046.

    CAS  Article  Google Scholar 

  10. Albisa A, Piacentini E, Sebastian V, Arruebo M, Santamaria J, Giorno L. Preparation of drug-loaded PLGA-PEG nanoparticles by membrane-assisted nanoprecipitation. Pharm Res. 2017;34(6):1296–308. https://doi.org/10.1007/s11095-017-2146-y.

    CAS  Article  PubMed  Google Scholar 

  11. Allen S, Osorio O, Liu Y-G, Scott E. Facile assembly and loading of theranostic polymersomes via multi-impingement flash nanoprecipitation. J Control Release. 2017;262:91–103. https://doi.org/10.1016/j.jconrel.2017.07.026.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Beck-Broichsitter M, Nicolas J, Couvreur P. Solvent selection causes remarkable shifts of the “Ouzo region” for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation. Nanoscale. 2015;7(20):9215–21. https://doi.org/10.1039/C5NR01695A.

  13. Yang Z, Foster D, Dhinojwala A. Continuous production of polymer nanoparticles using a membrane-based flow cell. J Colloid Interface Sci. 2017;501:150–5. https://doi.org/10.1016/j.jcis.2017.04.044.

    CAS  Article  PubMed  Google Scholar 

  14. Vitale SA, Katz JL. Liquid droplet dispersions formed by homogeneous liquid−liquid nucleation: “The Ouzo Effect.” Langmuir. 2003;19(10):4105–10. https://doi.org/10.1021/la026842o.

  15. Aubry J, Ganachaud F, Cohen Addad J-P, Cabane B. Nanoprecipitation of polymethylmethacrylate by solvent shifting: 1. Boundaries. Langmuir. 2009;25(4):1970–9. https://doi.org/10.1021/la803000e.

    CAS  Article  PubMed  Google Scholar 

  16. Legrand P, Lesieur S, Bochot A, Gref R, Raatjes W, Barratt G, et al. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int J Pharm. 2007;344(1-2):33–43. https://doi.org/10.1016/j.ijpharm.2007.05.054.

    CAS  Article  PubMed  Google Scholar 

  17. Sommerfeld P, Schroeder U, Sabel BA. Long-term stability of PBCA nanoparticle suspensions suggests clinical usefulness. Int J Pharm. 1997;155(2):201–7. https://doi.org/10.1016/S0378-5173(97)00153-1.

    CAS  Article  Google Scholar 

  18. Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69(1):1–9. https://doi.org/10.1016/j.ejpb.2007.08.001.

    CAS  Article  PubMed  Google Scholar 

  19. Di Pasquale N, Marchisio DL, Barresi AA. Model validation for precipitation in solvent-displacement processes. Chem Eng Sci. 2012;84:671–83. https://doi.org/10.1016/j.ces.2012.08.043.

    CAS  Article  Google Scholar 

  20. Horn D, Rieger J. Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angew Chem Int Ed. 2001;40(23):4330–61. https://doi.org/10.1002/1521-3773(20011203)40:23<4330::AID-ANIE4330>3.0.CO;2-W.

    CAS  Article  Google Scholar 

  21. Lince F, Marchisio DL, Barresi AA. Strategies to control the particle size distribution of poly-ε-caprolactone nanoparticles for pharmaceutical applications. J Colloid Interface Sci. 2008;322(2):505–15. https://doi.org/10.1016/j.jcis.2008.03.033.

    CAS  Article  PubMed  Google Scholar 

  22. Matteucci ME, Hotze MA, Johnston KP, Williams RO. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. Langmuir. 2006;22(21):8951–9. https://doi.org/10.1021/la061122t.

  23. Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36(7):887–913. https://doi.org/10.1016/j.progpolymsci.2011.01.001.

    CAS  Article  Google Scholar 

  24. Bilati U, Allémann E, Doelker E. Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur J Pharm Biopharm. 2005;59(3):375–88. https://doi.org/10.1016/j.ejpb.2004.10.006.

  25. Bodmeier R, Chen H, Tyle P, Jarosz P. Spontaneous formation of drug-containing acrylic nanoparticles. J Microencapsul. 1991;8(2):161–70. https://doi.org/10.3109/02652049109071485.

    CAS  Article  PubMed  Google Scholar 

  26. Hoffart V, Lamprecht A, Maincent P, Lecompte T, Vigneron C, Ubrich N. Oral bioavailability of a low molecular weight heparin using a polymeric delivery system. J Control Release. 2006;113(1):38–42. https://doi.org/10.1016/j.jconrel.2006.03.020.

    CAS  Article  PubMed  Google Scholar 

  27. Jiao Y, Ubrich N, Marchand-Arvier M, Vigneron C, Hoffman M, Lecompte T, et al. In vitro and in vivo evaluation of oral heparin-loaded polymeric nanoparticles in rabbits. Circulation. 2002;105(2):230–5. https://doi.org/10.1161/hc0202.101988.

    CAS  Article  PubMed  Google Scholar 

  28. Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G. Eudragit RS100® nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci. 2002;16(1-2):53–61. https://doi.org/10.1016/S0928-0987(02)00057-X.

    CAS  Article  PubMed  Google Scholar 

  29. Gargouri M, Sapin A, Bouali S, Becuwe P, Merlin JL, Maincent P. Optimization of a new non-viral vector for transfection: Eudragit nanoparticles for the delivery of a DNA plasmid. Technol Cancer Res Treat. 2009;8(6):433–43. https://doi.org/10.1177/153303460900800605.

    CAS  Article  PubMed  Google Scholar 

  30. Seremeta KP, Chiappetta DA, Sosnik A. Poly(ɛ-caprolactone), Eudragit® RS 100 and poly(ɛ-caprolactone)/Eudragit® RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz. Colloids Surf B Biointerfaces. 2013;102:441–9. https://doi.org/10.1016/j.colsurfb.2012.06.038.

    CAS  Article  PubMed  Google Scholar 

  31. Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal. 2000;22(5):717–27. https://doi.org/10.1016/S0731-7085(99)00272-1.

    CAS  Article  PubMed  Google Scholar 

  32. Colbourn EA, Rowe RC. Novel approaches to neural and evolutionary computing in pharmaceutical formulation: challenges and new possibilities. Future Med Chem. 2009;1(4):713–26. https://doi.org/10.4155/fmc.09.57.

    CAS  Article  PubMed  Google Scholar 

  33. Achanta AS, Kowalski JG, Rhodes CT. Artificial neural networks: implications for pharmaceutical sciences. Drug Dev Ind Pharm. 1995;21(1):119–55. https://doi.org/10.3109/03639049509048099.

    CAS  Article  Google Scholar 

  34. Díaz-Rodríguez P, Landin M. Smart design of intratumoral thermosensitive β-lapachone hydrogels by artificial neural networks. Int J Pharm. 2012;433(1–2):112–8. https://doi.org/10.1016/j.ijpharm.2012.05.008.

    CAS  Article  PubMed  Google Scholar 

  35. Kazazi-Hyseni F, Landin M, Lathuile A, Veldhuis GJ, Rahimian S, Hennink WE, et al. Computer modeling assisted design of monodisperse PLGA microspheres with controlled porosity affords zero order release of an encapsulated macromolecule for 3 months. Pharm Res. 2014;31(10):2844–56. https://doi.org/10.1007/s11095-014-1381-8.

    CAS  Article  PubMed  Google Scholar 

  36. Landin M, Rowe RC. In: Aguilar JE, editor. Formulation tools for pharmaceutical development. Oxford: Woodhead; 2013. p. 7–37.

    Chapter  Google Scholar 

  37. Landín M, Rowe RC, York P. Advantages of neurofuzzy logic against conventional experimental design and statistical analysis in studying and developing direct compression formulations. Eur J Pharm Sci. 2009;38(4):325–31. https://doi.org/10.1016/j.ejps.2009.08.004.

    CAS  Article  PubMed  Google Scholar 

  38. Rowe RC, Colbourn EA. Computers in pharmaceutical formulation. In: Ekins S, editor. Computer applications in pharmaceutical research and development. New York: Wiley; 2006. p. 677–701.

  39. Colbourn E, Rowe RC. Encyclopedia of pharmaceutical technology. New York: Marcel Dekker; 2005. p. 145–57.

    Google Scholar 

  40. Johnson BK, Prud’homme RK. Mechanism for rapid self-assembly of block copolymer nanoparticles. Phys Rev Lett. 2003;91(11):118302. https://doi.org/10.1103/PhysRevLett.91.118302.

    CAS  Article  PubMed  Google Scholar 

  41. Molpeceres J, Guzman M, Aberturas MR, Chacon M, Berges L. Application of central composite designs to the preparation of polycaprolactone nanoparticles by solvent displacement. J Pharm Sci. 1996;85(2):206–13. https://doi.org/10.1021/js950164r.

    CAS  Article  PubMed  Google Scholar 

  42. Stepanyan R, Lebouille JGJL, Slot JJM, Tuinier R, Stuart MAC. Controlled nanoparticle formation by diffusion limited coalescence. Phys Rev Lett. 2012;109(13):138301. https://doi.org/10.1103/PhysRevLett.109.138301.

    CAS  Article  PubMed  Google Scholar 

  43. Xu J, Zhang S, Machado A, Lecommandoux S, Sandre O, Gu F, et al. Controllable microfluidic production of drug-loaded PLGA nanoparticles using partially water-miscible mixed solvent microdroplets as a precursor. Sci Rep. 2017;7(1):4794. https://doi.org/10.1038/s41598-017-05184-5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Tan Y, Xu K, Li L, Liu C, Song C, Wang P. Fabrication of size-controlled starch-based nanospheres by nanoprecipitation. ACS Appl Mater Interfaces. 2009;1(4):956–9. https://doi.org/10.1021/am900054f.

    CAS  Article  PubMed  Google Scholar 

  45. Badri W, Miladi K, Nazari QA, Fessi H, Elaissari A. Effect of process and formulation parameters on polycaprolactone nanoparticles prepared by solvent displacement. Colloids Surf Physicochem Eng Asp. 2017;516:238–44. https://doi.org/10.1016/j.colsurfa.2016.12.029.

    CAS  Article  Google Scholar 

  46. Choi S-W, Kwon H-Y, Kim W-S, Kim J-H. Thermodynamic parameters on poly(D,L-lactide-co-glycolide) particle size in emulsification-diffusion process. Colloids Surf Physicochem Eng Asp. 2002;201(1-3):283–9. https://doi.org/10.1016/S0927-7757(01)01042-1.

    CAS  Article  Google Scholar 

  47. Galindo-Rodriguez S, Allémann E, Fessi H, Doelker E. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res. 2004;21(8):1428–39. https://doi.org/10.1023/B:PHAM.0000036917.75634.be.

    CAS  Article  PubMed  Google Scholar 

  48. J. H. Kim, T. K. Ryu, K. Y. Jeong, D.-H. Paik, S.-K. Moon and S.-W. Choi, J Pharm Investig, 2014, 45, 157–161.

  49. Van Krevelen DW, Te Nijenhuis K. In: Van Krevelen DW, Nijenhuis KT, editors. Properties of polymers (fourth edition). Amsterdam: Elsevier; 2009. p. 189–227.

    Chapter  Google Scholar 

  50. Derlacki ZJ, Easteal AJ, Edge AVJ, Woolf LA, Roksandic Z. Diffusion coefficients of methanol and water and the mutual diffusion coefficient in methanol-water solutions at 278 and 298 K. J Phys Chem. 1985;89(24):5318–22. https://doi.org/10.1021/j100270a039.

    CAS  Article  Google Scholar 

  51. Wang C-C, Zhang G, Shah NH, Infeld MH, Waseem Malick A, McGinity JW. Influence of plasticizers on the mechanical properties of pellets containing Eudragit® RS 30 D. Int J Pharm. 1997;152(2):153–63. https://doi.org/10.1016/S0378-5173(97)00080-X.

    CAS  Article  Google Scholar 

  52. Ganachaud F, Katz JL. Nanoparticles and nanocapsules created using the Ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices. ChemPhysChem. 2005;6(2):209–16. https://doi.org/10.1002/cphc.200400527.

    CAS  Article  Google Scholar 

  53. Hornig S, Heinze T. Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters. Biomacromolecules. 2008;9(5):1487–92. https://doi.org/10.1021/bm8000155.

    CAS  Article  PubMed  Google Scholar 

  54. Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm. 1998;24(12):1113–28. https://doi.org/10.3109/03639049809108571.

    CAS  Article  PubMed  Google Scholar 

  55. Sternling CV, Scriven LE. Interfacial turbulence: hydrodynamic instability and the marangoni effect. AICHE J. 1959;5(4):514–23. https://doi.org/10.1002/aic.690050421.

    CAS  Article  Google Scholar 

  56. Prasad KN, Luong TT, FlorenceJoelle Paris AT, Vaution C, Seiller M, Puisieux F. Surface activity and association of ABA polyoxyethylene–polyoxypropylene block copolymers in aqueous solution. J Colloid Interface Sci. 1979;69(2):225–32. https://doi.org/10.1016/0021-9797(79)90151-6.

    CAS  Article  Google Scholar 

Download references

Funding

The authors acknowledge the funding support from FONDECYT 11130235 and FONDAP 15130011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier O. Morales.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 784 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jara, M.O., Catalan-Figueroa, J., Landin, M. et al. Finding key nanoprecipitation variables for achieving uniform polymeric nanoparticles using neurofuzzy logic technology. Drug Deliv. and Transl. Res. 8, 1797–1806 (2018). https://doi.org/10.1007/s13346-017-0446-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0446-8

Keywords

  • Nanoprecipitation
  • Artificial neural networks
  • Polymeric nanoparticles
  • Nanoparticle production
  • Mixing time
  • Homogeneous nanoparticles