Skip to main content

Advertisement

Log in

Ex vivo rabbit cornea diffusion studies with a soluble insert of moxifloxacin

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The objective of this research was to develop and evaluate an ocular insert for the controlled drug delivery of moxifloxacin which could perhaps be used in the treatment of corneal keratitis or even bacterial endophthalmitis. We have evaluated the ex vivo ocular diffusion of moxifloxacin through rabbit cornea, both fresh and preserved under different conditions. Histological studies were also carried out. Subsequently, drug matrix inserts were prepared using bioadhesive polymers. The inserts were evaluated for their physicochemical parameters. Ophthalmic ex vivo permeation of moxifloxacin was carried out with the most promising insert. The formulate insert was thin and provided higher ocular diffusion than commercial formulations. Ocular diffusion studies revealed significant differences between fresh and frozen corneas. Histological examinations also showed differences in the thickness of stroma between fresh and frozen corneas. The ophthalmic insert we have developed allows a larger quantity of moxifloxacin to permeate through the cornea than existing commercial formulations of the drug. Ocular delivery of moxifloxacin with this insert could be a new approach for the treatment of eye diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HPMC:

Hydroxypropyl methylcellulose 4500

MOX:

Moxifloxacin

PBS:

Phosphate buffered solution

PEG:

Polyethylene glycol

PVP-K30:

Polyvinylpyrrolidone K30

References

  1. Souza JG, Dias K, Pereira TA, Bernardi DS, Lopez RFV. Topical delivery of ocular therapeutics: carrier systems and physical methods. J Pharm Pharmacol. 2014;66:507–30.

    Article  CAS  PubMed  Google Scholar 

  2. Vandervoort J, Ludwig A. Ocular drug delivery: nanomedicine applications. Nanomedicine. 2007;2:11–21.

    Article  CAS  PubMed  Google Scholar 

  3. Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12:348–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mundada AS, Shrikhande BK. Design and evaluation of soluble ocular drug insert for controlled release of ciprofloxacin hydrochloride. Drug Dev Ind Pharm. 2006;32:443–8.

    Article  CAS  PubMed  Google Scholar 

  5. Mundada AS, Shrikhande BK. Formulation and evaluation of ciprofloxacin hydrochloride soluble ocular drug insert. Curr Eye Res. 2008;33:469–75.

    Article  CAS  PubMed  Google Scholar 

  6. Rathore K, Nema R. Review on ocular inserts. Int J PharmTech Res. 2009;1:164–9.

    CAS  Google Scholar 

  7. Rathore K, Nema R. An insight into ophthalmic drug delivery system. Int J Pharm Sci Drug Res. 2009;1:1–5.

    CAS  Google Scholar 

  8. Kampougeris G, Antoniadou A, Kavouklis E, Chryssouli Z, Giamarellou H. Penetration of moxifloxacin into the human aqueous humour after oral administration. Br J Ophthalmol. 2005;89:628–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hariprasad SM, Shah GK, Mieler WF, Feiner L, Blinder KJ, Holekamp NM, et al. Vitreous and aqueous penetration of orally administered moxifloxacin in humans. Arch Ophthalmol. 2006;124:178.

  10. Nam KY, Lee SJ, Kim JY. Systemic moxifloxacin in Streptococcus viridans endophthalmitis. Ocul Immunol Inflamm. 2017:1–7.

  11. Yannuzzi NA, Si N, Relhan N, et al. Endophthalmitis after clear corneal cataract surgery: outcomes over two decades. Am J Ophthalmol. 2017;174:155–9.

    Article  PubMed  Google Scholar 

  12. Woodcock JM, Andrews JM, Boswell FJ, Brenwald NP, Wise R. In vitro activity of BAY 12-8039, a new fluoroquinolone. Antimicrob Agents Chemother. 1997;41:101–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tyson SL, Bailey R, Roman JS, Zhan T, Hark LA, Haller JA. Clinical outcomes after injection of a compounded pharmaceutical for prophylaxis after cataract surgery. Curr Opin Ophthalmol. 2017;28:73–80.

    Article  PubMed  Google Scholar 

  14. Langlois M-H, Montagut M, Dubost J-P, Grellet J, Saux M-C. Protonation equilibrium and lipophilicity of moxifloxacin. J Pharm Biomed Anal. 2005;37:389–93.

    Article  CAS  PubMed  Google Scholar 

  15. Biedenbach DJ, Jones RN. The comparative antimicrobial activity of levofloxacin tested against 350 clinical isolates of streptococci. Diagn Microbiol Infect Dis. 1996;25:47–51.

    Article  CAS  PubMed  Google Scholar 

  16. Dalhoff A, Petersen U, Endermann R. In vitro activity of BAY 12-8039, a new 8-methoxyquinolone. Chemotherapy. 1996;42:410–25.

    Article  CAS  PubMed  Google Scholar 

  17. Davis R, Bryson HM. Levofloxacin. Drugs. 1994;47:677–700.

    Article  CAS  PubMed  Google Scholar 

  18. Pawar PK, Katara R, Majumdar DK. Design and evaluation of moxifloxacin hydrochloride ocular inserts. Acta Pharma. 2012;62:93–104.

    Article  CAS  Google Scholar 

  19. Kalevar V. Donor corneae for preservation. A modified dissection technique. Br J Ophthalmol. 1968;52:695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Majumdar S, Hingorani T, Srirangam R. Evaluation of active and passive transport processes in corneas extracted from preserved rabbit eyes. J Pharm Sci. 2010;99:1921–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fu RC-C, Lidgate DM. In vitro rabbit corneal permeability study of ketorolac, tromethamine, a non-steroidal anti-inflammatory agent. Drug Dev Ind Pharm. 1986;12:2403–30.

    Article  CAS  Google Scholar 

  22. Majumdar S, Hingorani T, Srirangam R, Gadepalli RS, Rimoldi JM, Repka MA. Transcorneal permeation of L- and D-aspartate ester prodrugs of acyclovir: delineation of passive diffusion versus transporter involvement. Pharm Res. 2009;26:1261–9.

    Article  CAS  PubMed  Google Scholar 

  23. Ahuja M, Dhake AS, Majumdar DK. Effect of formulation factors on in-vitro permeation of diclofenac from experimental and marketed aqueous eye drops through excised goat cornea. Yakugaku Zasshi. 2006;126:1369–75.

    Article  CAS  PubMed  Google Scholar 

  24. Pawar PK, Majumdar DK. Effect of formulation factors on in vitro permeation of moxifloxacin from aqueous drops through excised goat, sheep, and buffalo corneas. AAPS PharmSciTech. 2006;7:E1–6.

    Article  Google Scholar 

  25. Srinivas N, Narasu L, Shankar BP, Mullangi R. Development and validation of a HPLC method for simultaneous quantitation of gatifloxacin, sparfloxacin and moxifloxacin using levofloxacin as internal standard in human plasma: application to a clinical pharmacokinetic study. Biomed Chromatogr. 2008;22:1288–95.

    Article  CAS  PubMed  Google Scholar 

  26. Rodríguez IC, Cerezo A, Salem II. Sistemas de liberación bioadhesivos. ARs Pharm. 2000;1:115–28.

    Google Scholar 

  27. Ramkanth S, Chetty C. Design and evaluation of diclofenac sodium ocusert. PharmTech Res. 2009;1:1219–23.

    CAS  Google Scholar 

  28. Balaguer-Fernández C, Padula C, Femenía-Font A, Merino V, Santi P, López-Castellano A. Development and evaluation of occlusive systems employing polyvinyl alcohol for transdermal delivery of sumatriptan succinate. Drug Deliv. 2010;17:83–91.

    Article  PubMed  Google Scholar 

  29. Femenía-Font A, Padula C, Marra F, Balaguer-Fernández C, Merino V, López-Castellano A, et al. Bioadhesive monolayer film for the in vitro transdermal delivery of sumatriptan. J Pharm Sci. 2006;95:1561–9.

  30. Rathore MS, Majumdar DK. Effect of formulation factors on in vitro transcorneal permeation of gatifloxacin from aqueous drops. AAPS PharmSciTech. 2006;7:E1–6.

    Article  Google Scholar 

  31. Ubaidulla U, Reddy MVS, Ruckmani K, Ahmad FJ, Khar RK. Transdermal therapeutic system of carvedilol: effect of hydrophilic and hydrophobic matrix on in vitro and in vivo characteristics. AAPS PharmSciTech. 2007;8:2.

    Article  PubMed  Google Scholar 

  32. Aqil M, Ali A, Sultana Y, Najmi AK. Fabrication and evaluation of polymeric films for transdermal delivery of pinacidil. Pharmazie. 2004;59:631–5.

    CAS  PubMed  Google Scholar 

  33. Okamoto N, Ito Y, Nagai N, Murao T, Takiguchi Y, Kurimoto T, et al. Preparation of ophthalmic formulations containing cilostazol as an anti-glaucoma agent and improvement in its permeability through the rabbit cornea. J Oleo Sci. 2010;59:423–30.

  34. Srirangam R, Majumdar S. Passive asymmetric transport of hesperetin across isolated rabbit cornea. Int J Pharm. 2010;394:60–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chandran S, Roy A, Saha RN. Effect of pH and formulation variables on in vitro transcorneal permeability of flurbiprofen: a technical note. AAPS PharmSciTech. 2008;9:1031–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Van Der Bijl P, Engelbrecht AH, Van Eyk AD, Meyer D. Comparative permeability of human and rabbit corneas to cyclosporin and tritiated water. J Ocul Pharmacol Ther. 2002;18:419–27.

    Article  Google Scholar 

  37. Aburahma MH, Mahmoud AA. Biodegradable ocular inserts for sustained delivery of brimonidine tartarate: preparation and in vitro/in vivo evaluation. AAPS PharmSciTech. 2011;12:1335–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Franca JR, Foureaux G, Fuscaldi LL, et al. Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: in vitro and in vivo evaluation. PLoS One. 2014;9:e95461.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jeganath S, Viji AA, Devi KS. Design and evaluation of controlled release ocuserts of indomethacin. Int J Pharm Sci Res. 2011;2:80–6.

    Google Scholar 

  40. Reddy DM, Reddy YK, Reddy DR, Kumar NV, Suresh M, Althaff M, et al. Formulation and evaluation of ciprofloxacin ocuserts. Res J Pharm Technol. 2011;4:1663–5.

  41. Rao M, Nappinnai M, Raju S, Rao V, Reddy B. Fluconazole ocular inserts: formulation and in vitro evaluation. J Pharm Sci Res. 2010;2:344–50.

    Google Scholar 

  42. Kumari A, Sharma PK, Garg VK, Garg G. Ocular inserts—advancement in therapy of eye diseases. J Adv Pharm Technol Res. 2010;1:291–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Donnenfeld ED, Comstock TL, Proksch JW. Human aqueous humor concentrations of besifloxacin, moxifloxacin, and gatifloxacin after topical ocular application. J Cataract Refract Surg. 2011;37:1082–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia López-Castellano.

Ethics declarations

Conflict of interest disclosure

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastián-Morelló, M., Calatayud-Pascual, M.A., Rodilla, V. et al. Ex vivo rabbit cornea diffusion studies with a soluble insert of moxifloxacin. Drug Deliv. and Transl. Res. 8, 132–139 (2018). https://doi.org/10.1007/s13346-017-0443-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0443-y

Keywords

Navigation