Advertisement

Drug Delivery and Translational Research

, Volume 7, Issue 6, pp 859–866 | Cite as

MIV-150 and zinc acetate combination provides potent and broad activity against HIV-1

  • Olga Mizenina
  • Mayla Hsu
  • Ninochka Jean-Pierre
  • Meropi Aravantinou
  • Keith Levendosky
  • Gabriela Paglini
  • Thomas M. Zydowsky
  • Melissa Robbiani
  • José A. Fernández-RomeroEmail author
Short Communication

Abstract

We previously showed that the combination of the non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 with zinc acetate (ZA) formulated in a carrageenan (CG; MZC) gel provided macaques significant protection against vaginal simian-human immunodeficiency virus-RT (SHIV-RT) challenge, better than either MIV-150/CG or ZA/CG. The MZC gel was shown to be safe in a phase 1 clinical trial. Herein, we used in vitro approaches to study the antiviral properties of ZA and the MIV-150/ZA combination, compared to other NNRTIs. Like other NNRTIs, MIV-150 has EC50 values in the subnanomolar to nanomolar range against wild type and NNRTI or RT-resistant HIVs. While less potent than NNRTIs, ZA was shown to be active in primary cells against laboratory-adapted and primary HIV-1 isolates and HIV-1 isolates/clones with NNRTI and RT resistance mutations, with EC50 values between 20 and 110 μM. The MIV-150/ZA combination had a potent and broad antiviral activity in primary cells. In vitro resistance selection studies revealed that previously described NNRTI-resistant mutations were selected by MIV-150. ZA-resistant virus retained susceptibility to MIV-150 (and other RTIs) and MIV-150-selected virus remained sensitive to ZA. Notably, resistant virus was not selected when cultured in the presence of both ZA and MIV-150. This underscores the potency and breadth of the MIV-150/ZA combination, supporting preclinical macaque studies and the advancement of MZC microbicides into clinical testing.

Keywords

HIV-1 Zinc Antiviral NNRTIs Microbicides 

Notes

Acknowledgments

We thank Dr. Jeffrey D. Lifson and Julian Bess at Leidos Biomedical Research, Inc. for providing the HIV-1BaL, as well as Samantha Seidor and Ciby Abraham for preparation of ZA and control buffer solutions. This work was funded with the support of the United States Agency for International Development (USAID) Cooperative Agreement GPO-A-00-04-00019-00. This research is made possible by the generous support of the American people through the USAID. The contents of this manuscript are the sole responsibility of the Population Council and do not necessarily reflect the views or policies of USAID or of the U.S. government. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. None of the material in this article has been published or is under consideration elsewhere. MR is a 2002 Elizabeth Glaser Scientist.

Compliance with ethical standards

All the experiments published in this manuscript comply with the current laws of the country in which they were performed. All institutional and national guidelines for the care and use of laboratory animals were followed.

O. Mizenina, M. Hsu, N. Jean-Pierre, M. Aravantinou, K. Levendosky, G. Paglini, T.M. Zydowsky, M. Robbiani, and J. A. Fernández-Romero declare that they have no conflict of interest.

Supplementary material

13346_2017_421_MOESM1_ESM.docx (128 kb)
Online Resource 1 (DOCX 127 kb)

References

  1. 1.
    Fernandez-Romero JA, Abraham CJ, Rodriguez A, Kizima L, Jean-Pierre N, Menon R, et al. Zinc acetate/carrageenan gels exhibit potent activity in vivo against high-dose herpes simplex virus 2 vaginal and rectal challenge. Antimicrob Agents Chemother. 2012;56(1):358–68.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fernandez-Romero JA, Thorn M, Turville SG, Titchen K, Sudol K, Li J, et al. Carrageenan/MIV-150 (PC-815), a combination microbicide. Sex Transm Dis. 2007;34(1):9–14.CrossRefPubMedGoogle Scholar
  3. 3.
    Hsu M, Aravantinou M, Menon R, Seidor S, Goldman D, Kenney J, et al. A combination microbicide gel protects macaques against vaginal simian human immunodeficiency virus-reverse transcriptase infection, but only partially reduces herpes simplex virus-2 infection after a single high-dose cochallenge. AIDS Res Hum Retrovir. 2014;30(2):174–83.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kenney J, Aravantinou M, Singer R, Hsu M, Rodriguez A, Kizima L, et al. An antiretroviral/zinc combination gel provides 24 hours of complete protection against vaginal SHIV infection in macaques. PLoS One. 2011;6(1):e15835.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kenney J, Rodriguez A, Kizima L, Seidor S, Menon R, Jean-Pierre N, et al. A modified zinc acetate gel, a potential nonantiretroviral microbicide, is safe and effective against simian-human immunodeficiency virus and herpes simplex virus 2 infection in vivo. Antimicrob Agents Chemother. 2013;57(8):4001–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kenney J, Singer R, Derby N, Aravantinou M, Abraham CJ, Menon R, et al. A single dose of a MIV-150/zinc acetate gel provides 24 h of protection against vaginal simian human immunodeficiency virus reverse transcriptase infection, with more limited protection rectally 8-24 h after gel use. AIDS Res Hum Retrovir. 2012;28(11):1476–84.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kizima L, Rodriguez A, Kenney J, Derby N, Mizenina O, Menon R, et al. A potent combination microbicide that targets SHIV-RT, HSV-2 and HPV. PLoS One. 2014;9(4):e94547.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ouattara LA, Barnable P, Mawson P, Seidor S, Zydowsky TM, Kizima L, et al. MIV-150-containing intravaginal rings protect macaque vaginal explants against SHIV-RT infection. Antimicrob Agents Chemother. 2014;58(5):2841–8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rodriguez A, Kleinbeck K, Mizenina O, Kizima L, Levendosky K, Jean-Pierre N, et al. In vitro and in vivo evaluation of two carrageenan-based formulations to prevent HPV acquisition. Antivir Res. 2014;108:88–93.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Singer R, Derby N, Rodriguez A, Kizima L, Kenney J, Aravantinou M, et al. The nonnucleoside reverse transcriptase inhibitor MIV-150 in carrageenan gel prevents rectal transmission of simian/human immunodeficiency virus infection in macaques. J Virol. 2011;85(11):5504–12.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Singer R, Mawson P, Derby N, Rodriguez A, Kizima L, Menon R, et al. An intravaginal ring that releases the NNRTI MIV-150 reduces SHIV transmission in macaques. Sci Transl Med. 2012;4(150):150ra23.CrossRefGoogle Scholar
  12. 12.
    Calenda G, Villegas G, Barnable P, Litterst C, Levendosky K, Gettie A, et al. MZC gel inhibits SHIV-RT and HSV-2 in macaque vaginal mucosa and SHIV-RT in rectal mucosa. J Acquir Immune Defic Syndr. 2017;74(3):e67–74.CrossRefPubMedGoogle Scholar
  13. 13.
    Friedland BA, Hoesley CJ, Plagianos M, Hoskin E, Zhang S, Teleshova N, et al. First-in-human trial of MIV-150 and zinc acetate coformulated in a carrageenan gel: safety, pharmacokinetics, acceptability, adherence, and pharmacodynamics. J Acquir Immune Defic Syndr. 2016;73(5):489–96.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Derby N, Aravantinou M, Kenney J, Ugaonkar SR, Wesenberg A, Wilk J, et al. An intravaginal ring that releases three antiviral agents and a contraceptive blocks SHIV-RT infection, reduces HSV-2 shedding, and suppresses hormonal cycling in rhesus macaques. Drug Deliv Transl Res. 2017. doi: 10.1007/s13346-017-0389-0.
  15. 15.
    Ugaonkar SR, Wesenberg A, Wilk J, Seidor S, Mizenina O, Kizima L, et al. A novel intravaginal ring to prevent HIV-1, HSV-2, HPV, and unintended pregnancy. J Control Release. 2015;213:57–68.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    D'Cruz OJ, Uckun FM. Dawn of non-nucleoside inhibitor-based anti-HIV microbicides. J Antimicrob Chemother. 2006;57(3):411–23.CrossRefPubMedGoogle Scholar
  17. 17.
    Hsu M, Keele BF, Aravantinou M, Krawczyk N, Seidor S, Abraham CJ, et al. Exposure to MIV-150 from a high-dose intravaginal ring results in limited emergence of drug resistance mutations in SHIV-RT infected rhesus macaques. PLoS One. 2014;9(2):e89300.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Barnable P, Calenda G, Bonnaire T, Menon R, Levendosky K, Gettie A, et al. MIV-150/zinc acetate gel inhibits cell-associated simian-human immunodeficiency virus reverse transcriptase infection in a macaque vaginal explant model. Antimicrob Agents Chemother. 2015;59(7):3829–37.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Barnable P, Calenda G, Ouattara L, Gettie A, Blanchard J, Jean-Pierre N, et al. A MIV-150/zinc acetate gel inhibits SHIV-RT infection in macaque vaginal explants. PLoS One. 2014;9(9):e108109.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fletcher P, Kiselyeva Y, Wallace G, Romano J, Griffin G, Margolis L, et al. The nonnucleoside reverse transcriptase inhibitor UC-781 inhibits human immunodeficiency virus type 1 infection of human cervical tissue and dissemination by migratory cells. J Virol. 2005;79(17):11179–86.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fletcher P, Harman S, Azijn H, Armanasco N, Manlow P, Perumal D, et al. Inhibition of human immunodeficiency virus type 1 infection by the candidate microbicide dapivirine, a nonnucleoside reverse transcriptase inhibitor. Antimicrob Agents Chemother. 2009;53(2):487–95.CrossRefPubMedGoogle Scholar
  22. 22.
    Arens M, Travis S. Zinc salts inactivate clinical isolates of herpes simplex virus in vitro. J Clin Microbiol. 2000;38(5):1758–62.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kumel G, Schrader S, Zentgraf H, Daus H, Brendel M. The mechanism of the antiherpetic activity of zinc sulphate. J Gen Virol. 1990;71(Pt 12):2989–97.CrossRefPubMedGoogle Scholar
  24. 24.
    Levinson W, Faras A, Woodson B, Jackson J, Bishop JM. Inhibition of RNA-dependent DNA polymerase of Rous sarcoma virus by thiosemicarbazones and several cations. Proc Natl Acad Sci U S A. 1973;70(1):164–8.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Liu CY, Kielian M. Identification of a specific region in the e1 fusion protein involved in zinc inhibition of semliki forest virus fusion. J Virol. 2012;86(7):3588–94.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Antoine TE, Mishra YK, Trigilio J, Tiwari V, Adelung R, Shukla D. Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection. Antivir Res. 2012;96(3):363–75.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Krenn BM, Gaudernak E, Holzer B, Lanke K, Van Kuppeveld FJ, Seipelt J. Antiviral activity of the zinc ionophores pyrithione and hinokitiol against picornavirus infections. J Virol. 2009;83(1):58–64.CrossRefPubMedGoogle Scholar
  28. 28.
    te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010;6(11):e1001176.CrossRefGoogle Scholar
  29. 29.
    Karki S, Li MM, Schoggins JW, Tian S, Rice CM, MacDonald MR. Multiple interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-alphavirus activity. PLoS One. 2012;7(5):e37398.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang X, Tu F, Zhu Y, Gao G. Zinc-finger antiviral protein inhibits XMRV infection. PLoS One. 2012;7(6):e39159.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kelly P, InventorGenital lubricants containing zinc salts to reduce risk of HIV infection, U. Patent, Editor. USA 1997.Google Scholar
  32. 32.
    Fenstermacher KJ, DeStefano JJ. Mechanism of HIV reverse transcriptase inhibition by zinc: formation of a highly stable enzyme-(primer-template) complex with profoundly diminished catalytic activity. J Biol Chem. 2011;286(47):40433–42.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Trkola A, Matthews J, Gordon C, Ketas T, Moore JP. A cell line-based neutralization assay for primary human immunodeficiency virus type 1 isolates that use either the CCR5 or the CXCR4 coreceptor. J Virol. 1999;73(11):8966–74.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Begay O, Jean-Pierre N, Abraham CJ, Chudolij A, Seidor S, Rodriguez A, et al. Identification of personal lubricants that can cause rectal epithelial cell damage and enhance HIV type 1 replication in vitro. AIDS Res Hum Retrovir. 2011;27(9):1019–24.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Thermo Fisher Scientific. CyQuant Direct Cell Proliferation Assay Kit. https://www.thermofisher.com/order/catalog/product/C35011.
  36. 36.
    Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58(3):621–81.CrossRefPubMedGoogle Scholar
  37. 37.
    de Bethune MP. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989-2009). Antivir Res. 2010;85(1):75–90.CrossRefPubMedGoogle Scholar
  38. 38.
    Liu TF, Shafer RW. Web resources for HIV type 1 genotypic-resistance test interpretation. Clin Infect Dis. 2006;42(11):1608–18.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Derby N, Zydowsky T, Robbiani M. In search of the optimal delivery method for anti-HIV microbicides: are intravaginal rings the way forward? Expert Rev Anti-Infect Ther. 2013;11(1):5–8.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Fernandez-Romero JA, Deal C, Herold BC, Schiller J, Patton D, Zydowsky T, et al. Multipurpose prevention technologies: the future of HIV and STI protection. Trends Microbiol. 2015;23(7):429–36.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fernández-Romero JA, Gil PI, Ré V, Robbiani M, Paglini G. Current status of microbicides for prevention of sexually transmitted infections and strategies for preclinical evaluation of new candidates. Rev Argent Microbiol. 2014;46(3):256–68.PubMedGoogle Scholar
  42. 42.
    Fernandez-Romero JA, Teleshova N, Zydowsky TM, Robbiani M. Preclinical assessments of vaginal microbicide candidate safety and efficacy. Adv Drug Deliv Rev. 2015;92:27–38.CrossRefPubMedGoogle Scholar

Copyright information

© Controlled Release Society 2017

Authors and Affiliations

  • Olga Mizenina
    • 1
  • Mayla Hsu
    • 1
  • Ninochka Jean-Pierre
    • 1
  • Meropi Aravantinou
    • 1
  • Keith Levendosky
    • 1
  • Gabriela Paglini
    • 2
  • Thomas M. Zydowsky
    • 1
  • Melissa Robbiani
    • 1
  • José A. Fernández-Romero
    • 1
    • 3
    Email author
  1. 1.Center for Biomedical Research, Population CouncilNew YorkUSA
  2. 2.Instituto de Virología J.M.Vanella-Facultad de Ciencias Médicas-Universidad Nacional de CórdobaCórdobaArgentina
  3. 3.Science Department, Borough of Manhattan Community CollegeThe City University of New YorkNew YorkUSA

Personalised recommendations