Skip to main content

Advertisement

Log in

Fabrication of acyclovir-loaded flexible membrane vesicles (FMVs): evidence of preclinical efficacy of antiviral activity in murine model of cutaneous HSV-1 infection

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The present investigation focuses on the development and evaluation of acyclovir-loaded flexible membrane vesicles (ACY-FMVs) and evaluates their targeting potential to localize the drug into skin layers. The drug-loaded FMVs were prepared by thin-film hydration method and characterized for various attributes including micromeritics, entrapment efficiency, vesicle shape, size, and degree of deformability. The values of particle size and zeta potential of the developed carrier system were found to be 453.7 nm and − 11.62 mV, respectively. The system was further incorporated into a hydrogel and evaluated for skin permeability and retention characteristics in comparison to marketed formulation. The developed formulation demonstrated enhanced retention of drug deep inside the skin layers which can probably decrease the frequency of application of the drug, thereby reducing its adverse effects. Skin irritancy studies performed on Laca mice skin proved the safety and non-irritant nature of ACY-FMVs. The pharmacodynamic studies on murine model for HSV-1 infection demonstrated immense potential and safety of topically applied ACY-FMVs. However, more intensive studies need to be pursued to explore and exploit the potential of lipid-based systems in anti-viral therapeutics. These preclinical findings provide a hope for corroborating the efficacy in clinical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cortesi R, Esposito E. Acyclovir delivery systems. Expert Opin Drug Deliv. 2008;5:1217–30.

    Article  CAS  PubMed  Google Scholar 

  2. Richards DM, Carmine AA, Brogden RN, Heel RC, Speight TM, Avery GS. Acyclovir. A review of its pharmacodynamic properties and therapeutic efficacy. Drugs. 1983;26:378–438.

    Article  CAS  PubMed  Google Scholar 

  3. Jin Y, Tong L, Ai P, Li M, Hou X. Self-assembled drug delivery systems. 1. Properties and in vitro/in vivo behavior of acyclovir self-assembled nanoparticles (SAN). Int J Pharm. 2006;309:199–207.

    Article  CAS  PubMed  Google Scholar 

  4. Bolger GT, Allen T, Garneau M, Lapeyre N, Liard F, Jaramillo J. Cutaneously applied acyclovir acts systemically in the treatment of herpetic infection in the hairless mouse. Antivir Res. 1997;35:157–65.

    Article  CAS  PubMed  Google Scholar 

  5. Tucker WE Jr. Preclinical toxicology profile of acyclovir: an overview. Am J Med. 1982;73:27–30.

    Article  PubMed  Google Scholar 

  6. de Jalon EG, Blanco-Prieto MJ, Ygartua P, Santoyo S. Increased efficacy of acyclovir-loaded microparticles against herpes simplex virus type 1 in cell culture. Eur J Pharm Biopharm. 2003;56:183–7.

    Article  PubMed  Google Scholar 

  7. Blum MR, Liao SH, de Miranda P. Overview of acyclovir pharmacokinetic disposition in adults and children. Am J Med. 1982;73:186–92.

    Article  CAS  PubMed  Google Scholar 

  8. Thummel KE, Shen DD. Design and optimization of dosage regimens pharmacokinetic data. In: Hardman JG, Limbird LE, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill Press; 2001.

    Google Scholar 

  9. Bryson YJ, Dillon M, Lovett M, Acuna G, Taylor S, Cherry JD, et al. Treatment of first episodes of genital herpes simplex virus infection with oral acyclovir. A randomized double-blind controlled trial in normal subjects. N Engl J Med. 1983;308:916–21.

    Article  CAS  PubMed  Google Scholar 

  10. Brown TJ, McCrary M, Tyring SK. Antiviral agents: non-antiretroviral [correction of nonantiviral] drugs. J Am Acad Dermatol. 2002;47:581–99.

    Article  PubMed  Google Scholar 

  11. Chikhale P, Bodor N. Improved delivery of acyclovir to the skin using a dihydrotrigonelline in equilibrium with trigonelline redox carrier. J Pharm Sci. 1991;80:402–3.

    Article  CAS  PubMed  Google Scholar 

  12. Shishu, Rajan S, Kamalpreet. Development of novel microemulsion-based topical formulations of acyclovir for the treatment of cutaneous herpetic infections. AAPS PharmSciTech. 2009;10:559–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Freeman DJ, Sheth NV, Spruance SL. Failure of topical acyclovir in ointment to penetrate human skin. Antimicrob Agents Chemother. 1986;29:730–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spruance SL, Crumpacker CS. Topical 5 percent acyclovir in polyethylene glycol for herpes simplex labialis. Antiviral effect without clinical benefit. Am J Med. 1982;73:315–9.

    Article  CAS  PubMed  Google Scholar 

  15. Sharma G, Saini MK, Thakur K, Kapil N, Garg NK, Raza K, et al. Aceclofenac cocrystal nanoliposomes for rheumatoid arthritis with better dermatokinetic attributes: a preclinical study. Nanomedicine (Lond). 2017;12:615–38.

    Article  CAS  Google Scholar 

  16. Jacob S, Nair AB, Al-Dhubiab BE. Preparation and evaluation of niosome gel containing acyclovir for enhanced dermal deposition. J Liposome Res. 2016;26:1–10.

  17. Choi MJ, Maibach HI. Elastic vesicles as topical/transdermal drug delivery systems. Int J Cosmet Sci. 2005;27:211–21.

    Article  CAS  PubMed  Google Scholar 

  18. Sharma G, Kaur M, Raza K, Thakura K, Katare OP. Aceclofenac–β-cyclodextrin-vesicles: a dual carrier approach for skin with enhanced stability, efficacy and dermatokinetic profile. RSC Adv. 2016;6:20713–27.

  19. Raza K, Singh B, Mahajan A, Negi P, Bhatia A, Katare OP. Design and evaluation of flexible membrane vesicles (FMVs) for enhanced topical delivery of capsaicin. J Drug Target. 2011;19:293–02.

    Article  CAS  PubMed  Google Scholar 

  20. Sharma G, Dhankar G, Thakur K, Raza K, Katare OP. Benzyl benzoate-loaded microemulsion for topical applications: enhanced dermatokinetic profile and better delivery promises. AAPS PharmSciTech. 2016;17:1221–31.

    Article  CAS  PubMed  Google Scholar 

  21. Yue P, Lu X, Zhang Z, Yuan H, Zhu W, Zheng Q, et al. The study on the entrapment efficiency and in vitro release of Puerarin submicron emulsion. AAPS PharmSciTech. 2009;10:376–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bonacucina G, Martelli S, Palmieri GF. Rheological, mucoadhesive and release properties of carbopol gels in hydrophilic cosolvents. Int J Pharm. 2004;282:115–30.

    Article  CAS  PubMed  Google Scholar 

  23. Bhatia A, Raza K, Singh B, Katare OP. Phospholipid-based formulation with improved attributes of coal tar. J Cosmet Dermatol. 2009;8:282–8.

    Article  PubMed  Google Scholar 

  24. Patel J, Garala K, Basu B, Raval M, Dharamsi A. Solubility of aceclofenac in polyamidoamine dendrimer solutions. Int J Pharm Investig. 2011;1:135–8.

  25. Sharma G, Devi N, Thakur K, Jain A, Katare OP. Lanolin-based organogel of salicylic acid: evidences of better dermatokinetic profile in imiquimod-induced keratolytic therapy in BALB/c mice model. Drug Deliv Transl Res. 2017; doi:10.1007/s13346-017-0364-9.

  26. Subongkot T, Ngawhirunpat T. Effect of liposomal fluidity on skin permeation of sodium fluorescein entrapped in liposomes. Int J Nanomedicine. 2015;10:4581–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Heck R, Lukic MZ, Savic SD, Daniels R, Lunter DJ. Ex vivo skin permeation and penetration of nonivamide from and in vivo skin tolerability of film-forming formulations containing porous silica. Eur J Pharm Sci. 2017;106:34–40.

    Article  CAS  PubMed  Google Scholar 

  28. Negi P, Singh B, Sharma G, Beg S, Raza K, Katare OP. Phospholipid microemulsion-based hydrogel for enhanced topical delivery of lidocaine and prilocaine: QbD-based development and evaluation. Drug Deliv. 2015;21:1–17.

    Google Scholar 

  29. Raza K, Shareef MA, Singal P, Sharma G, Negi P, Katare OP. Lipid-based capsaicin-loaded nano-colloidal biocompatible topical carriers with enhanced analgesic potential and decreased dermal irritation. J Liposome Res. 2014;24:290–6.

  30. Raza K, Singh B, Lohan S, Sharma G, Negi P, Yachha Y, et al. Nano-lipoidal carriers of tretinoin with enhanced percutaneous absorption, photostability, biocompatibility and anti-psoriatic activity. Int J Pharm. 2013;456:65–72.

  31. ICH. Stability testing of new drug substances and products. In: International Conference on Harmonization (ICH) Guidelines; Q1A (R2). 2003.

  32. Piret J, Desormeaux A, Gourde P, Juhasz J, Bergeron MG. Efficacies of topical formulations of foscarnet and acyclovir and of 5-percent acyclovir ointment (Zovirax) in a murine model of cutaneous herpes simplex virus type 1 infection. Antimicrob Agents Chemother. 2000;44:30–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaur A, Sharma G, Gupta V, Ratho RK, Katare OP. Enhanced acyclovir delivery using w/o type microemulsion: preclinical assessment of antiviral activity using murine model of zosteriform cutaneous HSV-1 infection. Artif Cells Nanomed Biotechnol. 2017;12:1–9.

    Google Scholar 

  34. Koch C, Reichling J, Schneele J, Schnitzler P. Inhibitory effect of essential oils against herpes simplex virus type 2. Phytomedicine. 2008;15:71–8.

    Article  CAS  PubMed  Google Scholar 

  35. Simmons A, Nash AA. Zostiferom spread of herpes simplex virus as model of recrudescence and its use to investigate the role of immune cells in prevention of recurrent disease. J Virol. 1984;52:816–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. El Zaafarany GM, Awad GA, Holayel SM, Mortada ND. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm. 2010;397:164–72.

    Article  PubMed  Google Scholar 

  37. Benson HA. Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv. 2006;3:727–37.

    Article  CAS  PubMed  Google Scholar 

  38. Sun W, Zou W, Huang G, Li A, Zhang N. Pharmacokinetics and targeting property of TFu-loaded liposomes with different sizes after intravenous and oral administration. J Drug Target. 2008;16:357–65.

    Article  CAS  PubMed  Google Scholar 

  39. Mohsen AM, AbouSamra MM, ElShebiney SA. Enhanced oral bioavailability and sustained delivery of glimepiride via niosomal encapsulation: in-vitro characterization and in-vivo evaluation. Drug Dev Ind Pharm. 2017;43:1254–64.

    Article  CAS  PubMed  Google Scholar 

  40. Dubey V, Mishra D, Dutta T, Nahar M, Saraf DK, Jain NK. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. J Control Release. 2007;123:148–54.

    Article  CAS  PubMed  Google Scholar 

  41. Sharma G, Goyal H, Thakur K, Raza K, Katare OP. Novel elastic membrane vesicles (EMVs) and ethosomes-mediated effective topical delivery of aceclofenac: a new therapeutic approach for pain and inflammation. Drug Deliv. 2016;23:3135–45.

    Article  CAS  PubMed  Google Scholar 

  42. Bhatia A, Singh B, Raza K, Wadhwa S, Katare OP. Tamoxifen-loaded lecithin organogel (LO) for topical application: development, optimization and characterization. Int J Pharm. 2013;44:47–59.

    Article  Google Scholar 

  43. Honeywell-Nguyen PL, Bouwstra JA. Vesicles as a tool for transdermal and dermal delivery. Drug Discov Today Technol. 2005;2:67–74.

    Article  CAS  PubMed  Google Scholar 

  44. Jain S, Mistry MA, Swarnakar NK. Enhanced dermal delivery of acyclovir using solid lipid nanoparticles. Drug Deliv Transl Res. 2011;1:395–406.

Download references

Acknowledgements

Authors are thankful to M/s Ipca Laboratories Ltd., Mumbai, for generously providing the gift samples of acyclovir where as to M/s Phospholipid GmbH, Nattermannallee, Germany, for the ex-gratis supply of Phospholipids.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaisar Raza or Om Prakash Katare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, G., Thakur, K., Setia, A. et al. Fabrication of acyclovir-loaded flexible membrane vesicles (FMVs): evidence of preclinical efficacy of antiviral activity in murine model of cutaneous HSV-1 infection. Drug Deliv. and Transl. Res. 7, 683–694 (2017). https://doi.org/10.1007/s13346-017-0417-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0417-0

Keywords

Navigation