Bone-targeting parathyroid hormone conjugates outperform unmodified PTH in the anabolic treatment of osteoporosis in rats


Synthetic parathyroid hormone (PTH) is clinically indicated for the treatment of osteoporosis, through its anabolic effects on parathyroid hormone receptors (PTHRs), located on osteoblast cells. However, the bioavailability of PTH for bone cells is restricted by the short half-life of PTH and the widespread distribution of PTHRs in non-skeletal tissues. To impart affinity for mineralized bone surfaces, bisphosphonate (BP)-mediated PTH analogues were synthesized, characterized, and evaluated in vitro and in vivo. The successful synthesis of PTH-PEG-BP was identified on MALDI-ToF mass spectra; bone-targeting potential was evaluated by hydroxyapatite binding test; and receptor bioactivity was assessed in UMR-106 (rat osteosarcoma) cells that constitutively express PTHRs. Therapeutic efficacy was evaluated using ovariectomized rats that remained untreated for 8 weeks to allow development of osteopenia. Those rats then received daily subcutaneous injections of PTH-PEG-BP, thiol-BP vehicle, or unmodified PTH, and compared to sham-operated healthy rats at 0, 4, 8, 12, and 16 weeks. In vivo micro-CT was conducted on the proximal tibial metaphysis to measure microstructural bone parameters, and new bone formation was detected using dynamic labeling. Bone strength was assessed using three-point bending mechanical testing. Our study determined that PTH-PEG-BP conjugates significantly enhanced PTH targeting to the bone matrix while retaining full PTH bioactivity. Moreover, PTH-PEG-BP conjugates significantly increased trabecular bone quality, anabolic bone formation, and improved bone strength over systemically administered PTH alone. We highlight the promise of a novel class of bone-targeting anabolic compound for the treatment of osteoporosis and related bone disorders.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    A. M. Parfitt, Osteoporosis. 2013.

    Google Scholar 

  2. 2.

    Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Investig. 2005;115(12):3318–25.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Aguirre JI, et al. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res. 2006;21(4):605–15.

    Article  PubMed  Google Scholar 

  4. 4.

    Mannstadt M, Jüppner H, Gardella TJ. Receptors for PTH and PTHrP: their biological importance and functional properties. Am J Phys. 1999;277(5 Pt 2):F665–75.

    CAS  Google Scholar 

  5. 5.

    Offermanns S, Iida-Klein A, Segre GV, Simon MI. Gaq family members couple parathyroid hormone (PTH)/PTH-related peptide and calcitonin receptors to phospholipase C in COS-7 cells. Mol Endocrinol. 1996;10:566–74.

    CAS  PubMed  Google Scholar 

  6. 6.

    Usdin TB, Gruber C, Bonner TI. Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2 receptor. J Biol Chem. 1995;270(26):15455–8.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Murray TM, Rao LG, Divieti P, Bringhurst FR. Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl-terminal ligands. Endocr Rev. 2005;26(1):78–113.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Hodsman AB, Fraher LJ, Ostbye T, Adachi JD, Steer BM. An evaluation of several biochemical markers for bone formation and resorption in a protocol utilizing cyclical parathyroid hormone and calcitonin therapy for osteoporosis. J Clin Investig. 1993;91(3):1138–48.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone. 2007;40(6):1434–46.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Datta NS. Osteoporotic fracture and parathyroid hormone. World J Orthop. 2011;2(8):67–74.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Neer M, et al. Treatment of postmenopausal osteoporosis with daily parathyroid hormone plus calcitriol. Osteoporos Int. 1993;3(Suppl 1):204–5.

    Article  PubMed  Google Scholar 

  12. 12.

    Lindsay R, et al. Randomised controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. Lancet. 1997;350(9077):550–5.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Rittmaster RS, et al. Enhancement of bone mass in osteoporotic women with parathyroid hormone followed by alendronate. J Clin Endocrinol Metab. 2000;85(6):2129–34.

    CAS  PubMed  Google Scholar 

  14. 14.

    Neer RM, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Deal C, Gideon J. Recombinant human PTH 1-34 (Forteo): an anabolic drug for osteoporosis. Cleve Clin J Med. 2003;70(7):585–601.

    Article  PubMed  Google Scholar 

  16. 16.

    Zanchetta JR, et al. Effects of teriparatide [recombinant human parathyroid hormone (1-34)] on cortical bone in postmenopausal women with osteoporosis. J Bone Miner Res. 2003;18(3):539–43.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Bieglmayer C, Prager G, Niederle B. Kinetic analyses of parathyroid hormone clearance as measured by three rapid immunoassays during parathyroidectomy. Clin Chem. 2002;48(10):1731–8.

    CAS  PubMed  Google Scholar 

  18. 18.

    Seshadri MS, et al. Some problems associated with adenylate cyclase bioassays for parathyroid hormone. Clin Sci. 1985;68(3):311–9.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Jones KO, Owusu-Ababio G, Vick AM, Khan MA. Pharmacokinetics and hepatic extraction of recombinant human parathyroid hormone, hPTH (1-34), in rat, dog, and monkey. J Pharm Sci. 2006;95(11):2499–506.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Blick SKA, Dhillon S, Keam SJ. Teriparatide: a review of its use in osteoporosis. Drugs. 2008;68(18):2709–37.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Vahle JL, et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1-34) for 2 years and relevance to human safety. Toxicol Pathol. 2002;30(3):312–21.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Doschak MR, Kucharski CM, Wright JEI, Zernicke RF, Uludag H. Improved bone delivery of osteoprotegerin by bisphosphonate conjugation in a rat model of osteoarthritis. Mol Pharm. 2009;6(2):634–40.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Bhandari KH, Newa M, Chapman J, Doschak MR. Synthesis, characterization and evaluation of bone targeting salmon calcitonin analogs in normal and osteoporotic rats. J Control Release. 2012;158(1):44–52.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Yang Y, Bhandari KH, Panahifar A, Doschak MR. Synthesis, characterization and biodistribution studies of 125I-radioiodinated di-PEGylated bone targeting salmon calcitonin analogue in healthy rats. Pharm Res. 2014;31(5):1146–57.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Yewle JN, Puleo DA, Bachas LG. Bifunctional bisphosphonates for delivering PTH (1-34) to bone mineral with enhanced bioactivity. Biomaterials. 2013;34(12):3141–9.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Ponnapakkam T, Katikaneni R, Sakon J, Stratford R, Gensure RC. Treating osteoporosis by targeting parathyroid hormone to bone. Drug Discov Today. 2014;19(3):204–8.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Reszka AA, Rodan GA. Nitrogen-containing bisphosphonate mechanism of action. Mini Rev Med Chem. 2004;4:711–9.

    CAS  PubMed  Google Scholar 

  28. 28.

    M. Sekimori, Y. Nakamura, T. Shimizu, “PEG-binding PTH or PEG-binding PTH derivative,” 2003.

    Google Scholar 

  29. 29.

    Brouwers JEM, Van Rietbergen B, Huiskes R, Ito K. Effects of PTH treatment on tibial bone of ovariectomized rats assessed by in vivo micro-CT. Osteoporos Int. 2009;20(11):1823–35.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Panahifar A, Maksymowych WP, Doschak MR. Potential mechanism of alendronate inhibition of osteophyte formation in the rat model of post-traumatic osteoarthritis: evaluation of elemental strontium as a molecular tracer of bone formation. Osteoarthr Cartil. 2012;20(7):694–702.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Yamaguchi DT, Hahn TJ, Iida-Klein A, Kleeman CR, Muallem S. Parathyroid hormone-activated calcium channels in an osteoblast-like clonal osteosarcoma cell line. cAMP-dependent and cAMP-independent calcium channels. J Biol Chem. 1987;262(16):7711–8.

    CAS  PubMed  Google Scholar 

  32. 32.

    Wu Y, Adeeb SM, John Duke M, Munoz-Paniagua D, Doschak MR. Compositional and material properties of rat bone after bisphosphonate and/or strontium ranelate drug treatment. J Pharm Pharm Sci. 2013;16(1):52–64.

    Article  PubMed  Google Scholar 

  33. 33.

    Panahifar A, Cooper DML, Doschak MR. 3-D localization of non-radioactive strontium in osteoarthritic bone: role in the dynamic labeling of bone pathological changes. J Orthop Res. 2015;33(11):1655–62.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Ralis ZA, Watkins G. Modified tetrachrome method for osteoid and defectively mineralized bone in paraffin sections. Biotech Histochem. 1992;67(6):339–45.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Leppänen O, Sievänen H, Jokihaara J, Pajamäki I, Järvinen TLN. Three-point bending of rat femur in the mediolateral direction: introduction and validation of a novel biomechanical testing protocol. J Bone Miner Res. 2006;21(8):1231–7.

    Article  PubMed  Google Scholar 

  36. 36.

    Jiang Y, et al. Effects of low-dose long-term sodium fluoride preventive treatment on rat bone mass and biomechanical properties. Calcif Tissue Int. 1996;58(1):30–9.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Washimi Y, et al. Effect of combined humanPTH(1-34) and calcitonin treatment in ovariectomized rats. Bone. 2007;41(5):786–93.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Shen V, Birchman R, Wu DD, Lindsay R. Skeletal effects of parathyroid hormone infusion in ovariectomized rats with or without estrogen repletion. J Bone Miner Res. 2000;15(4):740–6.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Järvinen TL, Sievänen H, Kannus P, Järvinen M. Dual-energy X-ray absorptiometry in predicting mechanical characteristics of rat femur. Bone. 1998;22(5):551–8.

    Article  PubMed  Google Scholar 

  40. 40.

    Ammann P, Shen V, Robin B, Mauras Y, Bonjour J-P, Rizzoli R. Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res. 2004;19(12):2012–20.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Jones MW, Mantovani G, Ryan SM, Wang X, Brayden DJ, Haddleton DM. Phosphine-mediated one-pot thiol–ene ‘click’ approach to polymer–protein conjugates. Chem Commun. 2009;2, no. 35:5272.

    Article  Google Scholar 

  42. 42.

    Na DH, Lee KC. Capillary electrophoretic characterization of PEGylated human parathyroid hormone with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem. 2004;331(2):322–8.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Ryan SM, Wang X, Mantovani G, Sayers CT, Haddleton DM, Brayden DJ. Conjugation of salmon calcitonin to a combed-shaped end functionalized poly(poly(ethylene glycol) methyl ether methacrylate) yields a bioactive stable conjugate. J Control Release. 2009;135(1):51–9.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Partridge NC, Bloch SR, Pearman AT. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression. J Cell Biochem. 1994;55(3):321–7.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Jin L, et al. Crystal structure of human parathyroid hormone 1-34 at 0.9-A resolution. J Biol Chem. 2000;275(35):27238–44.

    CAS  PubMed  Google Scholar 

  46. 46.

    Hoare SR, Usdin TB. Molecular mechanisms of ligand recognition by parathyroid hormone 1 (PTH1) and PTH2 receptors. Curr Pharm Des. 2001;7(8):689–713.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Tregear GW, et al. Bovine parathyroid hormone: minimum chain length of synthetic peptide required for biological activity. Endocrinology. 1973;93(6):1349–53.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Søgaard CH, Mosekilde L, Thomsen JS, Richards A, McOsker JE. A comparison of the effects of two anabolic agents (fluoride and PTH) on ash density and bone strength assessed in an osteopenic rat model. Bone. 1997;20(5):439–49.

    Article  PubMed  Google Scholar 

  49. 49.

    Valenta A, et al. Combined treatment with PTH (1-34) and OPG increases bone volume and uniformity of mineralization in aged ovariectomized rats. Bone. 2005;37(1):87–95.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Farlay D, Boivin G, Panczer G, Lalande A, Meunier PJ. Long-term strontium ranelate administration in monkeys preserves characteristics of bone mineral crystals and degree of mineralization of bone. J Bone Miner Res. 2005;20(9):1569–78.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Boivin G, et al. Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S 12911) administration. J Bone Miner Res. 1996;11(9):1302–11.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Li C, et al. Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J Bone Miner Res. 2010;25(5):968–75.

    CAS  PubMed  Google Scholar 

Download references


This research was funded by the Mitacs Elevate Strategic Fellowship Program (SFP), the Osteoarthritis Alberta Team Grant from Alberta Innovates—Health Solutions (AIHS), and the Canadian Institutes for Health Research (CIHR). We thank Madhuri Newa and Kathy Tang for their technical support in completion of this study.

Authors’ role

Study design and conduct: MRD and YY; preparation of PTH-PEG-BP analogues: YY and KHB; rat dosing and gavaging: YY, AP, and YW; micro-CT scanning: YY and YW; EPMA: YY, AP, and YW; histology: YY and AP; bone biomechanics: YY and YW; data analysis: YY, AP, YW, and MRD; data interpretation: YY, AAH, AP, YW, and MRD; drafting manuscript: YY, AAH, and AP; revising manuscript content: YY, AAH, AP, and MRD; approving final version of manuscript: YY, AAH, AP, and MRD. MRD takes responsibility for the integrity of the data analysis.

Author information



Corresponding author

Correspondence to Michael R. Doschak.

Ethics declarations

All animal procedures were approved by the University of Alberta Animal Care and Use Committee.


This study was presented in part as an abstract at the 2014 Annual Meeting & Exposition of the Controlled Release Society (CRS) in Chicago USA. The contents of this article are solely the responsibility of the authors, and all the authors state that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Aghazadeh-Habashi, A., Panahifar, A. et al. Bone-targeting parathyroid hormone conjugates outperform unmodified PTH in the anabolic treatment of osteoporosis in rats. Drug Deliv. and Transl. Res. 7, 482–496 (2017).

Download citation


  • PTH
  • Bone drug delivery
  • Anabolic therapy
  • Osteoporosis
  • Micro-CT