Application of electrospun fibers for female reproductive health

Abstract

Here, we present the current challenges in women’s reproductive health and the current state-of-the-art treatment and prevention options for STI prevention, contraception, and treatment of infections. We discuss how the versatile platform of electrospun fibers can be applied to each challenge, and postulate at how these technologies could be improved. The void of approved electrospun fiber-based products yields the potential to apply this useful technology to a number of medical applications, many of which are relevant to women’s reproductive health. Given the ability to tune drug delivery characteristics and three-dimensional geometry, there are many opportunities to pursue new product designs and routes of administration for electrospun fibers. For each application, we provide an overview of the versatility of electrospun fibers as a novel dosage form and summarize their advantages in clinical applications. We also provide a perspective on why electrospun fibers are well-suited for a variety of applications within women’s reproductive health and identify areas that could greatly benefit from innovations with electrospun fiber-based approaches.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Lewis DA, Latif AS, Ndowa F. WHO global strategy for the prevention and control of sexually transmitted infections: time for action. Sex Transm Infect. 2007;83(7):508-9. doi:10.1136/sti.2007.028142.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    UNAIDS. UNAIDS. Global AIDS Update. 2016;2016:2016.

    Google Scholar 

  3. 3.

    Ortayli N, Ringheim K, Collins L, Sladden T. Sexually transmitted infections: progress and challenges since the 1994 International Conference on Population and Development (ICPD). Contraception. 2014;90(6, Supplement):S22-2S31. doi: 10.1016/j.contraception.2014.06.024.

  4. 4.

    Satterwhite CL, Torrone E, Meites E, Dunne EF, Mahajan R, Ocfemia MCB, et al. Sexually Transmitted Infections Among US Women and Men: Prevalence and Incidence Estimates, 2008. Sex Transm Dis. 2013;40(3):187-93. doi:10.1097/OLQ.0b013e318286bb53.

    Article  PubMed  Google Scholar 

  5. 5.

    Lanfranco OA, Alangaden GJ. Genitourinary Tract Infections. Microbiology Spectrum. 2016;4(4). doi: 10.1128/microbiolspec.DMIH2-0019-2015.

  6. 6.

    CDC. 2015 Sexually Transmitted Diseases Surveillance. 2015.

  7. 7.

    Wijesooriya NS, Rochat RW, Kamb ML, Turlapati P, Temmerman M, Broutet N, et al. Global burden of maternal and congenital syphilis in 2008 and 2012: a health systems modeling study. Lancet Glob Health. 4(8):e525-e33. doi:10.1016/S2214-109X(16)30135-8.

  8. 8.

    Bradley H, Markowitz LE, Gibson T, McQuillan GM. Seroprevalence of Herpes Simplex Virus Types 1 and 2—United States, 1999-2010. J Infect Dis. 2013; doi:10.1093/infdis/jit458.

    Google Scholar 

  9. 9.

    WHO. Sexually transmitted infections(STIs) key facts. http://www.who.int/mediacentre/factsheets/fs110/en/. 2016.

  10. 10.

    Tucker N, Stanger J, Staiger MP, Razzaq H, Hofman K. The History of the Science and Technology of Electrospinning from 1600 to 1995. J Eng Fabr Fibers. 2012;7(3):63-73.

    CAS  Google Scholar 

  11. 11.

    Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. IEEE. 1993;1698

  12. 12.

    Rothwell SW, Reid TJ, Dorsey J, Flournoy WS, Bodo M, Janmey PA, et al. A Salmon Thrombin-Fibrin Bandage Controls Arterial Bleeding in a Swine Aortotomy Model. J Trauma Acute Care Surg. 2005;59(1):143. doi:10.1097/00005373-200,507,000-00023.

    CAS  Article  Google Scholar 

  13. 13.

    López-Jaramillo P, Rincón MY, García RG, Silva SY, Smith E, Kampeerapappun P, et al. A controlled, randomized-blinded clinical trial to assess the efficacy of a nitric oxide releasing patch in the treatment of cutaneous leishmaniasis by Leishmania (V.) panamensis. AmJTrop Med Hyg. 2010;83(1):97-101. doi:10.4269/ajtmh.2010.09-0287.

    Article  Google Scholar 

  14. 14.

    Silva SY, Rueda LC, Márquez GA, López M, Smith DJ, Calderón CA, et al. Double blind, randomized, placebo controlled clinical trial for the treatment of diabetic foot ulcers, using a nitric oxide releasing patch: PATHON. Trials. 2007;8:26. doi:10.1186/1745-6215-8-26.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Liang D, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev. 2007;59(14):1392-412. doi:10.1016/j.addr.2007.04.021.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49:5603-21.

    CAS  Article  Google Scholar 

  17. 17.

    Administration FaD. Generally Recognized As Safe (GRAS). 2016. http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/.

  18. 18.

    Yu D-G, Shen X-X, Branford-White C, White K, Zhu L-M, Bligh ASW. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology. 2009;20(5). doi: 10.1088/0957-4484/20/5/055104.

  19. 19.

    Kim K, Yu M, Zong X, Chiu J, Fang D, Seo YS. Control of degradation rate and hydrophilicity in electrospun non-woven poly (D, L-lactide) nanofiber scaffolds for biomedical applications. Biomaterials. 2003;24:4977-85.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Ball C, Krogstad E, Chaowanachan T, Woodrow K. Drug-Eluting Fibers for HIV-1 Inhibition and Contraception. PloS one. 2012;7(11). doi: 10.1371/journal.pone.0049792.

  21. 21.

    Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release: Off J Control Release Soc. 2003;89(2):341-53. doi:10.1016/S0168-3659(03)00097-X.

    CAS  Article  Google Scholar 

  22. 22.

    Cao H, Jiang X, Chai C, Chew S. RNA interference by nanofiber-based siRNA delivery system. J Control Release: Off J Control Release Soc. 2010;144(2):203-12. doi:10.1016/j.jconrel.2010.02.003.

    CAS  Article  Google Scholar 

  23. 23.

    Chew S, Wen J, Yim E, Leong K. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules. 2005;6(4):2017-24. doi:10.1021/bm0501149.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Zeng J, Aigner A, Czubayko F, Kissel T, Wendorff J, Greiner A. Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules. 2005;6(3):1484-8. doi:10.1021/bm0492576.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29(13):1989-2006.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Ball C, Chou S-F, Jiang Y, Woodrow KA. Coaxially electrospun fiber-based microbicides facilitate broadly tunable release of maraviroc. Mater Sci Eng C. 2016;63:117-24. doi:10.1016/j.msec.2016.02.018.

    CAS  Article  Google Scholar 

  27. 27.

    Blakney AK, Krogstad EA, Jiang YH, Woodrow KA. Delivery of multipurpose prevention drug combinations from electrospun nanofibers using composite microarchitectures. Int J Nanomedicine. 2014;9:2967-78. doi:10.2147/IJN.S61664.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Hong Y, Fujimoto K, Hashizume R, Guan J, Stankus JJ, Tobita K, et al. Generating elastic, biodegradable polyurethane/poly(lactide-co-glycolide) fibrous sheets with controlled antibiotic release via two-stream electrospinning. Biomacromolecules. 2008;9(4):1200-7. doi:10.1021/bm701201w.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Falde EJ, Freedman JD, Herrera VLM, Yohe ST, Colson YL, Grinstaff MW. Layered superhydrophobic meshes for controlled drug release. J Control Release. 2015;214:23-9. doi:10.1016/j.jconrel.2015.06.042.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Krogstad EA, Woodrow KA. Manufacturing scale-up of electrospun poly(vinyl alcohol) fibers containing tenofovir for vaginal drug delivery. Int J Pharm. 2014;475(1-2):282-91. doi:10.1016/j.ijpharm.2014.08.039.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Tara S, Kurobe H, Rocco KA, Maxfield MW, Best CA, Yi T, et al. Well-organized neointima of large-pore poly(l-lactic acid) vascular graft coated with poly(l-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(l-lactic acid) graft in a mouse aortic implantation model. Atherosclerosis. 2014;237(2):684-91. doi:10.1016/j.atherosclerosis.2014.09.030.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Zhang Z, Tang J, Wang H, Xia Q, Xu S, Han CC. Controlled Antibiotics Release System through Simple Blended Electrospun Fibers for Sustained Antibacterial Effects. ACS Appl Mater Interfaces. 2015;7(48):26,400-4. doi:10.1021/acsami.5b09820.

    CAS  Article  Google Scholar 

  33. 33.

    Cui W, Li X, Zhu X, Yu G, Zhou S, Weng J. Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules. 2006;7(5):1623-9. doi:10.1021/bm060057z.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Stanger-Hall KF, Hall DW. Abstinence-Only Education and Teen Pregnancy Rates: Why We Need Comprehensive Sex Education in the U.S. PLoS One. 2011;6(10):e24658. doi:10.1371/journal.pone.0024658.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Conley TD, Matsick JL, Moors AC, Ziegler A, Rubin JD. Re-examining the effectiveness of monogamy as an STI-preventive strategy. Prev Med. 2015;78:23-8. doi:10.1016/j.ypmed.2015.06.006.

    Article  PubMed  Google Scholar 

  36. 36.

    CDC. Vaccines: The Pink Book. Hepatitis B 2012.

  37. 37.

    CDC. Vaccine Information Staement I HPV Cervarix I VIS CDC. 2015.

  38. 38.

    Ahmed S, Lutalo T, Wawer M, Serwadda D, Sewankambo NK, Nalugoda F, et al. HIV incidence and sexually transmitted disease prevalence associated with condom use: a population study in Rakai, Uganda. AIDS. 2001;15(16):2171-9.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Cook LS, Koutsky LA, Holmes KK. Circumcision and sexually transmitted diseases. Am J Public Health. 1994;84(2):197-201.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Naswa S, Marfatia YS. Pre-exposure prophylaxis of HIV. Indian J Sex Transm Dis. 2011;32(1):1-8. doi:10.4103/0253-7184.81246.

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Hankins CA, Dybul MR. The promise of pre-exposure prophylaxis with antiretroviral drugs to prevent HIV transmission: a review. Curr Opin HIV AIDS. 2013;8(1):50-8. doi:10.1097/COH.0b013e32835b809d.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Izugbara Chimaraoke O, Ochako R, Izugbara C. Gender scripts and unwanted pregnancy among urban Kenyan women. Cult Health Sex. 2011;13 doi:10.1080/13691058.2011.598947.

    PubMed  Google Scholar 

  43. 43.

    Kabiru Caroline W, Orpinas P. Correlates of Condom Use Among Male High School Students in Nairobi, Kenya. J Sch Health. 2009;79 doi:10.1111/j.1746-1561.2009.00430.x.

    PubMed  Google Scholar 

  44. 44.

    Raphael M-C. Microbicides are promoted as offering a ‘female-controlled’ HIV prevention method: so can they revolutionize the HIV crisis of young women in Kenya? Journal of Public Health. 2012; doi:10.1093/pubmed/fds049.

    PubMed  Google Scholar 

  45. 45.

    Omar RF, Bergeron MG. The future of microbicides. Int J Infect Dis. 2011;15(10):e656-e60. doi:10.1016/j.ijid.2011.05.001.

    Article  PubMed  Google Scholar 

  46. 46.

    Madan RP, Keller MJ, Herold BC. Prioritizing prevention of HIV and sexually transmitted infections: first-generation vaginal microbicides. Curr Opin Infect Dis. 2006;19(1):49-54.

    Article  PubMed  Google Scholar 

  47. 47.

    Jr DA. Challenges of sexually transmitted disease prevention and control: no magic bullet, but some bullets would still be appreciated. Clin Infect Dis. 2005;41(6):804-7.

    Article  Google Scholar 

  48. 48.

    Aniagyei SE, Sims LB, Malik DA, Tyo KM, Curry KC, Kim W, et al. Evaluation of poly(lactic-co-glycolic acid) and poly(dl-lactide-co-ε-caprolactone) electrospun fibers for the treatment of HSV-2 infection. Mater Sci Eng C. 2017;72:238-51. doi:10.1016/j.msec.2016.11.029.

    CAS  Article  Google Scholar 

  49. 49.

    Carson D, Jiang Y, Woodrow KA. Tunable Release of Multiclass Anti-HIV Drugs that are Water-Soluble and Loaded at High Drug Content in Polyester Blended Electrospun Fibers. Pharm Res. 2015; doi:10.1007/s11095-015-1769-0.

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Huang C, Soenen S, van Gulck E, Vanham G, Rejman J, Van Calenbergh S, et al. Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery. Biomaterials. 2012;33(3):962-9. doi:10.1016/j.biomaterials.2011.10.004.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Blakney AK, Simonovsky F, Suydam IT, Ratner BD, Woodrow KA. Rapidly Biodegrading PLGA-Polyurethane Fibers for Sustained Release of Physicochemically Diverse Drugs. ACS Biomaterials Science & Engineering. 2016; doi:10.1021/acsbiomaterials.6b00346.

    Google Scholar 

  52. 52.

    Ball C, Woodrow KA. Electrospun solid dispersions of maraviroc for rapid intravaginal preexposure prophylaxis of HIV. Antimicrobial agents and chemotherapy. 2014;58(8):4855-4865. doi: 10.1128/AAC.02564-14.

  53. 53.

    Grooms TN, Vuong HR, Tyo KM, Malik DA, Sims LB, Whittington CP et al. Griffithsin-Modified Electrospun Fibers as a Delivery Scaffold to Prevent HIV Infection. Antimicrobial agents and chemotherapy. 2016;60(10).

  54. 54.

    Huang C, Soenen SJ, Gulck E, Rejman J, Vanham G, Lucas B, et al. Electrospun polystyrene fibers for HIV entrapment. Polym Adv Technol. 2014;25:827-34. doi:10.1002/pat.3310.

    CAS  Article  Google Scholar 

  55. 55.

    Schlesinger E, Johengen D, Luecke E, Rothrock G, McGowan I, van der Straten A, et al. A Tunable, Biodegradable, Thin-Film Polymer Device as a Long-Acting Implant Delivering Tenofovir Alafenamide Fumarate for HIV Pre-exposure Prophylaxis. Pharm Res. 2016;33(7):1649-56. doi:10.1007/s11095-016-1904-6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Gunawardana M, Remedios-Chan M, Miller CS, Fanter R, Yang F, Marzinke MA, et al. Pharmacokinetics of long-acting tenofovir alafenamide (GS-7340) subdermal implant for HIV prophylaxis. Antimicrob Agents Chemother. 2015;59(7):3913. doi:10.1128/AAC.00656-15.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Rodríguez I, Say L, Temmerman M. Family planning versus contraception: what’s in a name? Lancet Glob Health. 2014;2 doi:10.1016/s2214-109x(13)70177-3.

    Google Scholar 

  58. 58.

    Remare E, Catherine K. Physical access to health facilities and contraceptive use in Kenya: Evidence from the 2008-2009 Kenya Demographic and Health Survey. Afr J Reprod Health. 2012:16.

  59. 59.

    Tavrow P, Karei Eunice M, Obbuyi A, Omollo V. Community Norms About Youth Condom Use in Western Kenya: Is Transition Occurring? Afr J Reprod Health. 2012;16

  60. 60.

    Ochako R, Mbondo M, Aloo S, Kaimenyi S, Thompson R, Temmerman M, et al. Barriers to modern contraceptive methods uptake among young women in Kenya: a qualitative study. BMC Public Health. 2015;15(1):118. doi:10.1186/s12889-015-1483-1.

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Rozina M, Uzma A, Haleema HA. Contraceptive Knowledge, Attitude and Practice Among Rural Women. J Coll Physicians Surg Pak. 2008;18

  62. 62.

    Babar ST. Unmet need for family planning in Pakistan - PDHS 2006-2007: it’s time to re-examine déjà vu. Open Access J Contracept. 2010:1. doi:10.2147/oajc.s13715.

    Google Scholar 

  63. 63.

    Kahlenborn C, Modugno F, Potter DM, Severs WB. Oral Contraceptive Use as a Risk Factor for Premenopausal Breast Cancer: A Meta-analysis. Mayo Clin Proc. 2006;81(10):1290-302. doi:10.4065/81.10.1290.

    Article  PubMed  Google Scholar 

  64. 64.

    Smith JS, Green J, de Gonzalez AB, Appleby P, Peto J, Plummer M, et al. Cervical cancer and use of hormonal contraceptives: a systematic review. Lancet. 2003;361(9364):1159-67. doi:10.1016/S0140-6736(03)12949-2.

    Article  PubMed  Google Scholar 

  65. 65.

    Tanis BC, van den Bosch MAAJ, Kemmeren JM, Cats VM, Helmerhorst FM, Algra A, et al. Oral Contraceptives and the Risk of Myocardial Infarction. N Engl J Med. 2001;345(25):1787-93. doi:10.1056/NEJMoa003216.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Baillargeon J-P, McClish DK, Essah PA, Nestler JE. Association between the Current Use of Low-Dose Oral Contraceptives and Cardiovascular Arterial Disease: A Meta-Analysis. J Clin Endocrinol Metab. 2005;90(7):3863-70. doi:10.1210/jc.2004-1958.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Marnach ML, Long ME, Casey PM. Current Issues in Contraception. Mayo Clin Proc. 2013;88(3):295-9. doi:10.1016/j.mayocp.2013.01.007.

    Article  PubMed  Google Scholar 

  68. 68.

    Rajeswari R, Jayarama Reddy V, Subramanian S, Shayanti M, Radhakrishnan S, Seeram R. Minimally invasive injectable short nanofibers of poly(glycerol sebacate) for cardiac tissue engineering. Nanotechnology. 2012;23(38):385,102.

    Article  Google Scholar 

  69. 69.

    Lee S, Yun S, Park KI, Jang J-H. Sliding Fibers: Slidable, Injectable, and Gel-like Electrospun Nanofibers as Versatile Cell Carriers. ACS Nano. 2016;10(3):3282-94. doi:10.1021/acsnano.5b06605.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Bairagy NR, Mullick BC. Use of erythromycin for nonsurgical female sterilization in West Bengal, India: a study of 790 cases. Contraception. 2004;69(1):47-9. doi:10.1016/j.contraception.2003.07.005.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Sokal DC, Zipper J, King T. Transcervical quinacrine sterilization: clinical experience. Int J Gynecol Obstet. 1995;51:S57-69. doi:10.1016/0020-7292(95)90370-4.

    CAS  Article  Google Scholar 

  72. 72.

    Chaturvedi TP, Srivastava R, Srivastava AK, Gupta V, Verma PK. Doxycycline poly e-caprolactone nanofibers in patients with chronic periodontitis-a clinical evaluation. J Clin Diagn Res. 2013;7(10):2339-42.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Kenawy E-R-R, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release: Off J Control Release Soc. 2002;(1-2):81, 57-64. doi:10.1016/S0168-3659(02)00041-X.

  74. 74.

    Guidelines ST. STD Treatment Guidelines. 2015:2015.

  75. 75.

    Steen R, Wi TE, Kamali A, Ndowa F. Control of sexually transmitted infections and prevention of HIV transmission: mending a fractured paradigm. Bull World Health Organ. 2009;87(11):858-65. doi:10.2471/BLT.08.059212.

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    CDC. CDC 2015 sexually transmitted diseases (STDs) treatment guidlines. 2015.

  77. 77.

    WHO/UNAIDS/UNICEF. WHO/UNAIDS/UNICEF. Global update on HIV treatment 2013; June 2013.2013.

  78. 78.

    Sharma R, Garg T, Goyal AK, Rath G. Development, optimization and evaluation of polymeric electrospun nanofiber: A tool for local delivery of fluconazole for management of vaginal candidiasis. Artif Cells, Nanomedicine Biotechnol. 2016;44:524-31. doi:10.3109/21691401.2014.966194.

    CAS  Article  Google Scholar 

  79. 79.

    Tonglairoum P, Ngawhirunpat T, Rojanarata T, Kaomongkolgit R, Opanasopit P. Fabrication of a novel scaffold of clotrimazole-microemulsion-containing nanofibers using an electrospinning process for oral candidiasis applications. Colloids Surf B: Biointerfaces. 2015;126:18-25. doi:10.1016/j.colsurfb.2014.12.009.

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Reise M, Wyrwa R, Müller U, Zylinski M, Völpel A, Schnabelrauch M, et al. Release of metronidazole from electrospun poly(l-lactide-co-d/l-lactide) fibers for local periodontitis treatment. Dent Mater. 2012;28(2):179-88. doi:10.1016/j.dental.2011.12.006.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Chaturvedi TP, Srivastava R, Srivastava AK, Gupta V, Verma PK. Evaluation of metronidazole nanofibers in patients with chronic periodontitis: A clinical study. Int J Pharm Investig. 2012;2(4):213-7. doi:10.4103/2230-973X.107007.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Reise M, Wyrwa R, Müller U, Zylinski M, Völpel A, Schnabelrauch M, et al. Release of metronidazole from electrospun poly(<span class = “small” > l</span> − lactide-co- < span class = “small” > d</span>/<span class = “small” > l</span> − lactide) fibers for local periodontitis treatment. Dent Mater. 28(2):179-88. doi:10.1016/j.dental.2011.12.006.

  83. 83.

    Schkarpetkin D, Reise M, Wyrwa R, Völpel A, Berg A, Schweder M, et al. Development of novel electrospun dual-drug fiber mats loaded with a combination of ampicillin and metronidazole. Dent Mater. 32(8):951-60. doi:10.1016/j.dental.2016.05.002.

  84. 84.

    Xu X, Zhong W, Zhou S, Trajtman A, Alfa M. Electrospun PEG-PLA nanofibrous membrane for sustained release of hydrophilic antibiotics. J Appl Polym Sci. 2010;118(1):588-95. doi:10.1002/app.32415.

    CAS  Article  Google Scholar 

  85. 85.

    Bölgen N, Vargel İ, Korkusuz P, Menceloğlu YZ, Pişkin E. In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J Biomed Mater Res B Appl Biomater. 2007;81B(2):530-43. doi:10.1002/jbm.b.30694.

    Article  Google Scholar 

  86. 86.

    Reid G, Beuerman D, Heinemann C, Bruce AW. Probiotic Lactobacillus dose required to restore and maintain a normal vaginal flora. FEMS Immunol Med Microbiol. 2001;32:37-41. doi:10.1111/j.1574-695X.2001.tb00531.x.

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Hallen A, Jarstrand C, Pahlson C. Treatment of bacterial vaginosis with lactobacilli. Sex Transm Infect. 1992;19(3):146.

    CAS  Google Scholar 

  88. 88.

    Salalha W, Kuhn J, Dror Y, Zussman E. Encapsulation of bacteria and viruses in electrospun nanofibres. Nanotechnology. 2006;17:4675-81. doi:10.1088/0957-4484/17/18/025.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    López-Rubio A, Sanchez E, Sanz Y, Lagaron JM. Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers. Biomacromolecules. 2009;10(10):2823-9. doi:10.1021/bm900660b.

    Article  PubMed  Google Scholar 

  90. 90.

    Amna T, Hassan MS, Pandeya DR, Khil M-S, Hwang IH. Classy non-wovens based on animate L. gasseri-inanimate poly(vinyl alcohol): upstream application in food engineering. Appl Microbiol Biotechnol. 2013;97(10):4523-31. doi:10.1007/s00253-012-4666-z.

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    Liu Y, Rafailovich MH, Malal R, Cohn D, Chidambaram D. Engineering of bio-hybrid materials by electrospinning polymer-microbe fibers. Proc Natl Acad Sci. 2009;106(34):14,201-6. doi:10.1073/pnas.0903238106.

    CAS  Article  Google Scholar 

  92. 92.

    Zussman E. Encapsulation of cells within electrospun fibers. Polym Adv Technol. 2011;22(3):366-71. doi:10.1002/pat.1812.

    CAS  Article  Google Scholar 

  93. 93.

    Nagy ZK, Wagner I, Suhajda Á, Tobak T, Harasztos AH, Vigh T, et al. Nanofibrous solid dosage form of living bacteria prepared by electrospinning. Express Polym Lett. 2014;8(5):352-61.

    Article  Google Scholar 

  94. 94.

    Abrigo M, Kingshott P, McArthur SL. Electrospun Polystyrene Fiber Diameter Influencing Bacterial Attachment, Proliferation, and Growth. ACS Appl Mater Interfaces. 2015;7(14):7644-52. doi:10.1021/acsami.5b00453.

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Thurman AR, Doncel GF. Innate immunity and inflammatory response to Trichomonas vaginalis and bacterial vaginosis: relationship to HIV acquisition. Am J Reprod Immunol. 2011;65:89-98. doi:10.1111/j.1600-0897.2010.00902.x.

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Brotman RM, Klebanoff MA, Nansel TR, YU KF, Andrews WW, Zhang J, et al. Bacterial vaginosis assessed by gram stain and diminished colonization resistance to incident gonococcal, chlamydial, and trichomonal genital infection. J Infect Dis. 2010;202(12):1907-15.

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Thurman A, Clark M, Hurlburt J, Doncel G. Intravaginal rings as delivery systems for microbicides and multipurpose prevention technologies. Int J Women’s Health. 2013;5:695-708. doi:10.2147/IJWH.S34030.

    Article  Google Scholar 

  98. 98.

    Kizima L, Rodríguez A, Kenney J, Derby N, Mizenina O, Menon R, et al. A potent combination microbicide that targets SHIV-RT, HSV-2 and HPV. PLoS One. 2014;9(5):e94547. doi:10.1371/journal.pone.0094547.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by funding from the NIH/NIAID (AI112002) and the Bill and Melinda Gates Foundation (OPP1067729, OPP1110945).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kim A. Woodrow.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blakney, A.K., Jiang, Y. & Woodrow, K.A. Application of electrospun fibers for female reproductive health. Drug Deliv. and Transl. Res. 7, 796–804 (2017). https://doi.org/10.1007/s13346-017-0386-3

Download citation

Keywords

  • Electrospun fibers
  • Contraception
  • STIs
  • Infection
  • Treatment
  • Prevention
  • Female reproductive health