Enhancing thermal stability of a highly concentrated insulin formulation with Pluronic F-127 for long-term use in microfabricated implantable devices

Abstract

Development of highly concentrated formulations of protein and peptide drugs is a major challenge due to increased susceptibility to aggregation and precipitation. Numerous drug delivery systems including implantable and wearable controlled-release devices require thermally stable formulations with high concentrations due to limited device sizes and long-term use. Herein we report a highly concentrated insulin gel formulation (up to 80 mg/mL, corresponding to 2200 IU/mL), stabilized with a non-ionic amphiphilic triblock copolymer (i.e., Pluronic F-127 (PF-127)). Chemical and physical stability of insulin was found to be improved with increasing polymer concentration, as evidenced by reduced insulin fibrillation, formation of degradation products, and preserved secondary structure as measured by HPLC and circular dichroism spectroscopy, respectively. This formulation exhibits excellent insulin stability for up to 30 days in vitro under conditions of continuous shear at 37 °C, attributable to the amphiphilic properties of the copolymer and increased formulation viscosity. The mechanism of stabilizing insulin structure by PF-127 was investigated by coarse-grained molecular dynamics (CG-MD), all-atom MD, and molecular docking simulations. The computation results revealed that PF-127 could reduce fibrillation of insulin by stabilizing the secondary structure of unfolded insulin and forming hydrophobic interaction with native insulin. The gel formulations contained in microfabricated membrane-reservoir devices released insulin at a constant rate dependent on both membrane porosity and copolymer concentration. Subcutaneous implantation of the gel formulation-containing devices into diabetic rats resulted in normal blood glucose levels for the duration of drug release. These findings suggest that the thermally stable gel formulations are suitable for long-term and implantable drug delivery applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Chu MK, Chen J, Gordijo CR, Chiang S, Ivovic A, Koulajian K, et al. In vitro and in vivo testing of glucose-responsive insulin-delivery microdevices in diabetic rats. Lab Chip. 2012;12:2533–9.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Chu MK, Gordijo CR, Li J, Abbasi AZ, Giacca A, Plettenburg O, et al. In vivo performance and biocompatibility of a subcutaneous implant for real-time glucose-responsive insulin delivery. Diabetes Technol Ther. 2015;17:255–67.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Gordijo CR, Koulajian K, Shuhendler AJ, Bonifacio LD, Huang HY, Chiang S, et al. Nanotechnology-enabled closed loop insulin delivery device: in vitro and in vivo evaluation of glucose-regulated insulin release for diabetes control. Adv Funct Mater. 2011;21:73–82.

    CAS  Article  Google Scholar 

  4. 4.

    Gordijo CR, Shuhendler AJ, Wu XY. Glucose-responsive bioinorganic nanohybrid membrane for self-regulated insulin release. Adv Funct Mater. 2010;20:1404–12.

    CAS  Article  Google Scholar 

  5. 5.

    Li J, Chu MK, Gordijo CR, Abbasi AZ, Chen K, Adissu HA, et al. Microfabricated microporous membranes reduce the host immune response and prolong the functional lifetime of a closed-loop insulin delivery implant in a type 1 diabetic rat model. Biomaterials. 2015;47:51–61.

    Article  PubMed  Google Scholar 

  6. 6.

    Yu W, Jiang G, Liu D, Li L, Chen H, Liu Y, et al. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin. Mater Sci Eng C. 2017;71:725–34.

    CAS  Article  Google Scholar 

  7. 7.

    Yu W, Jiang G, Liu D, Li L, Tong Z, Yao J, et al. Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite. Mater Sci Eng C. 2017;73:425–8.

    CAS  Article  Google Scholar 

  8. 8.

    Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56:581–7.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    McBride SA, Tilger CF, Sanford SP, Tessier PM, Hirsa AH. Comparison of human and bovine insulin amyloidogenesis under uniform shear. J Phys Chem B. 2015;119:10426–33.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Sluzky V, Tamada JA, Klibanov AM, Langer R. Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces. Proc Natl Acad Sci U S A. 1991;88:9377–81.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, et al. Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry. 2001;40:6036–46.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Brange J, Andersen L, Laursen ED, Meyn G, Rasmussen E. Toward understanding insulin fibrillation. J Pharm Sci. 1997;86:517–25.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Huus K, Havelund S, Olsen HB, van de Weert M, Frokjaer S. Chemical and thermal stability of insulin: effects of zinc and ligand binding to the insulin zinc-hexamer. Pharm Res. 2006;23:2611–20.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Huus K, Havelund S, Olsen HB, van de Weert M, Frokjaer S. Thermal dissociation and unfolding of insulin. Biochemistry. 2005;44:11171–7.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Vinther TN, Norrman M, Ribel U, Huus K, Schlein M, Steensgaard DB, et al. Insulin analog with additional disulfide bond has increased stability and preserved activity. Protein Sci. 2013;22:296–305.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Rajpar SF, Foulds IS, Abdullah A, Maheshwari M. Severe adverse cutaneous reaction to insulin due to cresol sensitivity. Contact Dermatitis. 2006;55:119–20.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Zhang L, Zhu W, Song L, Wang Y, Jiang H, Xian S, et al. Effects of hydroxylpropyl-beta-cyclodextrin on in vitro insulin stability. Int J Mol Sci. 2009;10:2031–40.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23:2709–28.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Almeida H, Amaral MH, Lobao P, Sousa Lobo JM. Applications of poloxamers in ophthalmic pharmaceutical formulations: an overview. Expert Opin Drug Deliv. 2013;10:1223–37.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Escobar-Chavez JJ, Lopez-Cervantes M, Naik A, Kalia YN, Quintanar-Guerrero D, Ganem-Quintanar A. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci. 2006;9:339–58.

    CAS  PubMed  Google Scholar 

  21. 21.

    Taluja A, Bae YH. Role of a novel excipient poly(ethylene glycol)-b-poly(L-histidine) in retention of physical stability of insulin in aqueous solutions. Pharm Res. 2007;24:1517–26.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Wang Y, Gao J-Q, Li F, S-H RI, Liang W-Q. Triblock copolymer Pluronic®F127 sustains insulin release and reduces initial burst of microspheres—in vitro and in vivo study. Colloid Polym Sci. 2006;285:233–8.

    CAS  Article  Google Scholar 

  23. 23.

    Nasir F, Iqbal Z, Khan A, Khan JA, Khan A, Khuda F, et al. Development and evaluation of pluronic- and methylcellulose-based thermoreversible drug delivery system for insulin. Drug Dev Ind Pharm. 2014;40:1503–8.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Barichello JM, Morishita M, Takayama K, Nagai T. Absorption of insulin from pluronic F-127 gels following subcutaneous administration in rats. Int J Pharm. 1999;184:189–98.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Pillai O, Panchagnula R. Transdermal delivery of insulin from poloxamer gel: ex vivo and in vivo skin permeation studies in rat using iontophoresis and chemical enhancers. J Control Release. 2003;89:127–40.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Barichello JM, Morishita M, Takayama K, Chiba Y, Tokiwa S, Nagai T. Enhanced rectal absorption of insulin-loaded Pluronic F-127 gels containing unsaturated fatty acids. Int J Pharm. 1999;183:125–32.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Das N, Madan P, Lin S. Development and in vitro evaluation of insulin-loaded buccal Pluronic F-127 gels. Pharm Dev Technol. 2010;15:192–208.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Das N, Madan P, Lin S. Statistical optimization of insulin-loaded Pluronic F-127 gels for buccal delivery of basal insulin. Pharm Dev Technol. 2012;17:363–74.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Morishita M, Barichello JM, Takayama K, Chiba Y, Tokiwa S, Nagai T. Pluronic F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin. Int J Pharm. 2001;212:289–93.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Bedrov D, Ayyagari C, Smith GD. Multiscale modeling of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) triblock copolymer micelles in aqueous solution. J Chem Theory Comput. 2006;2:598–606.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Fischer J, Paschek D, Geiger A, Sadowski G. Modeling of aqueous poly (oxyethylene) solutions. 2. Mesoscale simulations. J Phys Chem B. 2008;112:13561–71.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Hatakeyama M, Faller R. Coarse-grained simulations of ABA amphiphilic triblock copolymer solutions in thin films. Phys Chem Chem Phys. 2007;9:4662–72.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Hezaveh S, Samanta S, De Nicola A, Milano G, Roccatano D. Understanding the interaction of block copolymers with DMPC lipid bilayer using coarse-grained molecular dynamics simulations. J Phys Chem B B. 2012;116:14333–45.

    CAS  Article  Google Scholar 

  34. 34.

    Lee H, de Vries AH, Marrink S-J, Pastor RW. A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics. J Phys Chem B. 2009;113:13186–94.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Nawaz S, Redhead M, Mantovani G, Alexander C, Bosquillon C, Carbone P. Interactions of PEO–PPO–PEO block copolymers with lipid membranes: a computational and experimental study linking membrane lysis with polymer structure. Soft Matter. 2012;8:6744–54.

    CAS  Article  Google Scholar 

  36. 36.

    Otto DP, De Villiers MM. The experimental evaluation and molecular dynamics simulation of a heat-enhanced transdermal delivery system. AAPS PharmSciTech. 2013;14:111–20.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Wood I, Martini M, Albano J, Cuestas M, Mathet V, Pickholz M. Coarse grained study of pluronic F127: comparison with shorter co-polymers in its interaction with lipid bilayers and self-aggregation in water. J Mol Struct. 2016;1109:106–13.

    CAS  Article  Google Scholar 

  38. 38.

    Johnson WC. Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins. 1999;35.

  39. 39.

    Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc. 2007;1:2876–90.

    Article  Google Scholar 

  40. 40.

    Sreerama N, Woody RW. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem. 2000;287:252–60.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111:7812–24.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Dehnavi E, Fathi-Roudsari M, Mirzaie S, Arab SS, Siadat SOR, Khajeh K. Engineering disulfide bonds in Selenomonas ruminantium β-xylosidase by experimental and computational methods. Int J Biol Macromolec. 2017;95:248–55.

    CAS  Article  Google Scholar 

  43. 43.

    Ivanova MI, Sievers SA, Sawaya MR, Wall JS, Eisenberg D. Molecular basis for insulin fibril assembly. Proc Natl Acad Sci U S A. 2009;106:18990–5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Berhanu WM, Masunov AE. Controlling the aggregation and rate of release in order to improve insulin formulation: molecular dynamics study of full-length insulin amyloid oligomer models. J Mol Model. 2012;18:1129–42.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Choi JH, May BC, Wille H, Cohen FE. Molecular modeling of the misfolded insulin subunit and amyloid fibril. Biophys J. 2009;97:3187–95.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–637.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26:1701–18.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52:7182–90.

    CAS  Article  Google Scholar 

  49. 49.

    Froimowitz M. HyperChem: a software package for computational chemistry and molecular modeling. BioTechniques. 1993;14:1010–3.

    CAS  PubMed  Google Scholar 

  50. 50.

    Yang C, Lu D, Liu Z. How PEGylation enhances the stability and potency of insulin: a molecular dynamics simulation. Biochemistry. 2011;50:2585–93.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–8.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Scott G, Waite S, McGinley M. Separation of insulin degradation products with Jupiter Proteo. Phenomenex Inc Application Note TN-1022 2014.

  54. 54.

    Sabokdast M, Habibi-Rezaei M, Poursasan N, Sabouni F, Ferdousi M, Azimzadeh-Irani E, et al. Insulin glycation coupled with liposomal lipid peroxidation and microglial cell death. RSC Adv. 2015;5:33114–22.

    CAS  Article  Google Scholar 

  55. 55.

    Gong H, He Z, Peng A, Zhang X, Cheng B, Sun Y, et al. Effects of several quinones on insulin aggregation. Sci Rep. 2014;4:5648.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Li D, Liu L, Yu H, Zhai Z, Zhang Y, Guo B, et al. A molecular simulation study of the protection of insulin bioactive structure by trehalose. J Mol Model. 2014;20:1–7.

    Google Scholar 

  57. 57.

    Blundell T, Dodson G, Hodgkin D, Mercola D. Insulin: the structure in the crystal and its reflection in chemistry and biology by. Adv Protein Chem. 1972;26:279–402.

    CAS  Article  Google Scholar 

  58. 58.

    Rafikova ER, Kurganov BI, Arutyunyan AM, Kust SV, Drachev VA, Dobrov EN. A mechanism of macroscopic (amorphous) aggregation of the tobacco mosaic virus coat protein. Int J Biochem Cell Biol. 2003;35:1452–60.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature. 2007;447:453–7.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported partially by the Ontario Research Fund-Research Excellence (ORF-RE) Nanomaterials grant (No. RE03-058) in partnership with Sanofi Aventis and the Equipment Grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada to X.Y. Wu. The NSERC CGS scholarship to J. Li and OGS Scholarship and Ben Cohen top-up awards to both J. Li and M. Chu are also acknowledged. S. Mirzaie is supported by an Islamic Azad University, Sanandaj Branch, scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiao Yu Wu.

Ethics declarations

Animal studies

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chu, M.K., Lu, B. et al. Enhancing thermal stability of a highly concentrated insulin formulation with Pluronic F-127 for long-term use in microfabricated implantable devices. Drug Deliv. and Transl. Res. 7, 529–543 (2017). https://doi.org/10.1007/s13346-017-0381-8

Download citation

Keywords

  • Long-term thermal stability
  • Highly concentrated insulin formulation
  • Implantable drug delivery device
  • Diabetes
  • Effect of amphiphilic triblock copolymer
  • Molecular docking
  • Coarse-grained molecular dynamics