Skip to main content

Advertisement

Log in

Target-specific delivery of siRNA into hepatoma cells’ cytoplasm by bifunctional carrier peptide

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

RNA interference (RNAi) is among the most potential approach for the therapy of hepatocellular carcinoma and the major barrier hindering siRNA therapeutics is the low efficiency of delivery to the desired cells. The current study aimed at developing a novel peptide for more efficient hepatoma targeted siRNA delivery, by combining luteinizing hormone-releasing hormone with hepatoma targeting specificity and MPG△NLS with cytoplasm-delivery tendency. The developed bifunctional peptide LHRH-MPG△NLS and siRNA were mixed together and resulted in LHRH-MPG△NLS/siRNA polyplexes through self-assembly. The polyplexes were characterized by agarose gel retardation and dynamic light scatting analysis. Hepatoma targeting specificity was analyzed with the GE IN Cell Analyzer 2000 High-Content Cellular Analysis System after cell transfection, and the effect of RNA interference was detected by RT-PCR. The results demonstrated that LHRH-MPG△NLS was able to assemble with siRNA to form stable and nano-sized peptide/siRNA polyplexes, which could inhibit the expression of the target gene and was essentially non-cytotoxic, as compared with the commercial transfection reagent lipofectamine 2000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. El-Serag HB. Hepatocellular carcinoma and hepatitis C in the United States. Hepatology. 2002;36 (5B).

  2. Bosch FX, de Sanjose S, Castellsague X. The prospects of HPV vaccination in cervical cancer prevention: results of a new independent trial. Cancer discovery. 2011;1(5):377–80.

    Article  PubMed  Google Scholar 

  3. Colagrande S, Inghilesi AL, Aburas S, Taliani GG, Nardi C, Marra F. Challenges of advanced hepatocellular carcinoma. World J Gastroenterol. 2016;22(34):7645–59. doi:10.3748/wjg.v22.i34.7645.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology. 2008;48(4):1312–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li X, Pan Y, Fan R, Jin H, Han S, Liu J, et al. Adenovirus-delivered CIAPIN1 small interfering RNA inhibits HCC growth in vitro and in vivo. Carcinogenesis. 2008;29(8):1587–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwarz RE, Smith DD. Trends in local therapy for hepatocellular carcinoma and survival outcomes in the US population. Am J Surg. 2008;195(6):829–36.

    Article  PubMed  Google Scholar 

  7. Deshpande R, O'Reilly D, Sherlock D. Improving outcomes with surgical resection and other ablative therapies in HCC. International journal of hepatology. 2011;2011

  8. Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362(1907):17.

    Google Scholar 

  9. Levin B. Cancer prevention: new challenges and opportunities commentary. Curr Opin Oncol. 1995;7(5):397–8.

    Article  CAS  PubMed  Google Scholar 

  10. Okuda K. Hepatocellular carcinoma. J Hepatol. 2000;32(1 Suppl):225–37.

    Article  CAS  PubMed  Google Scholar 

  11. Arbuthnot P, Thompson LJ. Harnessing the RNA interference pathway to advance treatment and prevention of hepatocellular carcinoma. World J Gastroenterol. 2008;14(11):1670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Panda JJ, Varshney A, Chauhan VS. Self-assembled nanoparticles based on modified cationic dipeptides and DNA: novel systems for gene delivery. J Nanobiotechnol. 2013;11(18):1–13.

    Google Scholar 

  13. Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007;8(3):173–84.

    Article  CAS  PubMed  Google Scholar 

  14. Llovet JM, Bruix J. Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol. 2008;48:S20–37.

    Article  CAS  PubMed  Google Scholar 

  15. Yau T, Chan P, Epstein R, Poon RT. Evolution of systemic therapy of advanced hepatocellular carcinoma. World journal of gastroenterology: WJG. 2008;14(42):6437.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gonzalez-Rodriguez A, Valverde AM. RNA interference as a therapeutic strategy for the treatment of liver diseases. Curr Pharm Des. 2015;21(31):4574–86.

    Article  CAS  PubMed  Google Scholar 

  17. Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer. 2011;11(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  18. Ren Y, Hauert S, Lo JH, Bhatia SN. Identification and characterization of receptor-specific peptides for siRNA delivery. ACS Nano. 2012;6(10):8620–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qin B, Chen Z, Jin W, Cheng K. Development of cholesteryl peptide micelles for siRNA delivery. J Control Release. 2013;172(1):159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li H, He J, Yi H, Xiang G, Chen K, Fu B, et al. siRNA suppression of hTERT using activatable cell-penetrating peptides in hepatoma cells. Biosci Rep. 2015;35(2) doi:10.1042/bsr20140145.

  21. Morris M, Vidal P, Chaloin L, Heitz F, Divita G. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res. 1997;25(14):2730–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morris MC, Chaloin L, Méry J, Heitz F, Divita G. A novel potent strategy for gene delivery using a single peptide vector as a carrier. Nucleic Acids Res. 1999;27(17):3510–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Simeoni F, Morris MC, Heitz F, Divita G. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 2003;31(11):2717–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klutz K, Schaffert D, Willhauck MJ, Grünwald GK, Haase R, Wunderlich N, et al. Epidermal growth factor receptor-targeted 131I-therapy of liver cancer following systemic delivery of the sodium iodide symporter gene. Mol Ther. 2011;19(4):676–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng M-R, Li Q, Wan T, He B, Han J, Chen H-X, et al. Galactosylated chitosan/5-fluorouracil nanoparticles inhibit mouse hepatic cancer growth and its side effects. World J Gastroenterol. 2012;18(42):6076–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meng L, Yang L, Zhao X, Zhang L, Zhu H, Liu C, et al. Targeted delivery of chemotherapy agents using a liver cancer-specific aptamer. PLoS One. 2012;7(4):e33434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Minko T, Dharap S, Fabbricatore A. Enhancing the efficacy of chemotherapeutic drugs by the suppression of antiapoptotic cellular defense. Cancer Detect Prev. 2003;27(3):193–202.

    Article  CAS  PubMed  Google Scholar 

  28. Dharap S, Qiu B, Williams G, Sinko P, Stein S, Minko T. Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides. J Control Release. 2003;91(1):61–73.

    Article  CAS  PubMed  Google Scholar 

  29. Minko T, Dharap S, Pakunlu R, Wang Y. Molecular targeting of drug delivery systems to cancer. Curr Drug Targets. 2004;5(4):389–406.

    Article  CAS  PubMed  Google Scholar 

  30. Tang Q, Cao B, Wu H, Cheng G. Selective gene delivery to cancer cells using an integrated cationic amphiphilic peptide. Langmuir. 2012;28(46):16126–32.

    Article  CAS  PubMed  Google Scholar 

  31. Li X. Taratula O, Taratula O, Schumann C, Minko T. LHRH-targeted drug delivery systems for cancer therapy. Mini. Rev. Med. Chem. 2016.

  32. Dharap S, Wang Y, Chandna P, Khandare J, Qiu B, Gunaseelan S, et al. Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc Natl Acad Sci U S A. 2005;102(36):12962–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yin H, Cheng KW, Hwa H-L, Peng C, Auersperg N, Leung PC. Expression of the messenger RNA for gonadotropin-releasing hormone and its receptor in human cancer cell lines. Life Sci. 1998;62(22):2015–23.

    Article  CAS  PubMed  Google Scholar 

  34. Szepeshazi K, Schally AV, Treszl A, Seitz S, Halmos G. Therapy of experimental hepatic cancers with cytotoxic peptide analogs targeted to receptors for luteinizing hormone-releasing hormone, somatostatin or bombesin. Anti-Cancer Drugs. 2008;19(4):349–58.

    Article  CAS  PubMed  Google Scholar 

  35. Liu L, Dong X, Zhu D, Song L, Zhang H, Leng XG. TAT-LHRH conjugated low molecular weight chitosan as a gene carrier specific for hepatocellular carcinoma cells. Int J Nanomedicine. 2014;9:2879.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Qiao X, Shao N, Dong X, Liu L, Zhu D, Leng X. Inhibition of HepG2 cell growth by LHRH-MPG△NLS/CDK2-siRNA nanoparticles. Int J Biomed Eng. 2014;37(2):85–8.

    Google Scholar 

  37. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and Biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was jointly supported by the Natural Science Foundation of Tianjin (Grant No: 11JCZDJC20300), the National Natural Science Foundation of China (Grant No: 81271693, 31200674), and the CAMS Innovation Fund for Medical Sciences (CAMS-I2M-3-004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lanxia Liu or Xigang Leng.

Ethics declarations

All experiments performed comply with the current laws and ethical standards of China. No animal or human studies were carried out by the authors for this article.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhu, L., Ma, J. et al. Target-specific delivery of siRNA into hepatoma cells’ cytoplasm by bifunctional carrier peptide. Drug Deliv. and Transl. Res. 7, 147–155 (2017). https://doi.org/10.1007/s13346-016-0348-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-016-0348-1

Keywords

Navigation