Multi-parametric surface plasmon resonance platform for studying liposome-serum interactions and protein corona formation

Abstract

When nanocarriers are administered into the blood circulation, a complex biomolecular layer known as the “protein corona” associates with their surface. Although the drivers of corona formation are not known, it is widely accepted that this layer mediates biological interactions of the nanocarrier with its surroundings. Label-free optical methods can be used to study protein corona formation without interfering with its dynamics. We demonstrate the proof-of-concept for a multi-parametric surface plasmon resonance (MP-SPR) technique in monitoring the formation of a protein corona on surface-immobilized liposomes subjected to flowing 100 % human serum. We observed the formation of formulation-dependent “hard” and “soft” coronas with distinct refractive indices, layer thicknesses, and surface mass densities. MP-SPR was also employed to determine the affinity (K D ) of a complement system molecule (C3b) with cationic liposomes with and without polyethylene glycol. Tendency to create a thick corona correlated with a higher affinity of opsonin C3b for the surface. The label-free platform provides a fast and robust preclinical tool for tuning nanocarrier surface architecture and composition to control protein corona formation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10:3223–30.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Nyström AM, Fadeel B. Safety assessment of nanomaterials: implications for nanomedicine. J Control Release. 2012;161:403–8.

    Article  PubMed  Google Scholar 

  3. 3.

    Bertrand N, Leroux J-C. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release. 2012;161:152–63.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chemie - Int Ed. 2010;49:6288–308.

    CAS  Article  Google Scholar 

  5. 5.

    Hamad I, Al-hanbali ЌO, Hunter AC, Rutt KJ, Andresen TL, Moghimi SM. Switching of complement activation pathways at the Nanosphere serum Interface : implications for stealth nanoparticle engineering. ACS Nano. 2010;4:6629–38.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Arima Y, Toda M, Iwata H. Complement activation on surfaces modified with ethylene glycol units. Biomaterials. 2008;29:551–60.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Salmaso S, Caliceti P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv. 2013;2013:1–19.

    Article  Google Scholar 

  8. 8.

    Mahon E, Salvati A, Baldelli Bombelli F, Lynch I, Dawson KA. Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery.”. J Control Release. Elsevier B.V2012;161:164–74.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Szebeni J, Muggia F, Gabizon A, Barenholz Y. Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv Drug Deliv Rev. Elsevier B.V2011;63:1020–30.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Chanan-Khan A. Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil(R)): possible role in hypersensitivity reactions. Ann Oncol. 2003;14:1430–7.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA. The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the twenty-first century. Adv Colloid Interf Sci. 2007;134-135:167–74.

    CAS  Article  Google Scholar 

  12. 12.

    Palchetti S, Colapicchioni V, Digiacomo L, Caracciolo G, Pozzi D, Capriotti AL, et al. The protein corona of circulating PEGylated liposomes. Biochim Biophys Acta - Biomembr. Elsevier B.V2016;1858:189–96.

    CAS  Article  Google Scholar 

  13. 13.

    Walczyk D, Bombelli FB, Monopoli MP, Lynch I. Dawson K a. What the cell “sees” in bionanoscience. J AmChem Soc. 2010;132:5761–8.

    CAS  Article  Google Scholar 

  14. 14.

    Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A. 2007;104:2050–5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Corbo C, Molinaro R, Parodi A, Furman NET, Salvatore F, Tasciotti E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine. 2016;11:81–100.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Docter D, Westmeier D, Markiewicz M, Stolte S, Knauer SK, Stauber RH. The nanoparticle biomolecule corona: lessons learned—challenge accepted? Chem Soc Rev Royal Society of Chemistry. 2015;44:6094–121.

    CAS  Article  Google Scholar 

  17. 17.

    Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8:772–81.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A. 2008;105:14265–70.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lundqvist M. Nanoparticles: tracking protein corona over time. Nat Publ Gr. 2013;8:1–2.

    Google Scholar 

  20. 20.

    Monopoli MP, Åberg C, Salvati A, Dawson KA, Åberg C, Salvati A, et al. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. Nature Publishing Group2012;7:779–86.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Carroll MV, Sim RB. Complement in health and disease. Adv Drug Deliv Rev. 2011;1–11. Elsevier B.V.

  22. 22.

    Pangburn MK, Schreiber RD, Müller-Eberhard HJ. C3b deposition during activation of the alternative complement pathway and the effect of deposition on the activating surface. J Immunol. 1983;131:1930–5.

    CAS  PubMed  Google Scholar 

  23. 23.

    Andersson J, Ekdahl KN, Lambris JD, Nilsson B. Binding of C3 fragments on top of adsorbed plasma proteins during complement activation on a model biomaterial surface. Biomaterials. 2005;26:1477–85.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. The role of complement in biomaterial-induced inflammation. Mol Immunol. 2007;44:82–94.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Arima Y, Toda M, Iwata H. Surface plasmon resonance in monitoring of complement activation on biomaterials. Adv Drug Deliv Rev. Elsevier B.V2011;63:988–99.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Granqvist N, Yliperttula M, Välimäki S, Pulkkinen P, Tenhu H, Viitala T. Control of the morphology of lipid layers by substrate surface chemistry. Langmuir. 2014;30:2799–809.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Kretschmann E. Determination of optical constants of metals by excitation of surface plasmons. Zeitschrift Fur Phys. 1971;241:313–24.

    CAS  Article  Google Scholar 

  28. 28.

    Granqvist N, Liang H, Laurila T, Sadowski J, Yliperttula M, Viitala T. Characterizing ultrathin and thick organic layers by surface plasmon resonance three-wavelength and waveguide mode analysis. Langmuir. 2013;29:8561–71.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Bakhtiar R. Surface plasmon resonance spectroscopy: a versatile technique in a biochemist ’ s toolbox. 2013.

  30. 30.

    Albers WM, Vikholm-lundin I. Surface plasmon resonance on nanoscale organic films. 1988;83–125.

  31. 31.

    Liang H, Miranto H, Granqvist N, Sadowski JW, Viitala T, Wang B, et al. Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films. Sensors Actuators B Chem. Elsevier B.V2010;149:212–20.

    CAS  Article  Google Scholar 

  32. 32.

    Abraham SA, Waterhouse DN, Mayer LD, Cullis PR, Madden TD, Bally MB. The liposomal formulation of doxorubicin. Methods Enzymol. 2005;391:71–97.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Bersani S, Salmaso S, Mastrotto F, Ravazzolo E, Semenzato A, Caliceti P. Star-like oligo-arginyl-maltotriosyl derivatives as novel cell-penetrating enhancers for the intracellular delivery of colloidal therapeutic systems. Bioconjug Chem. 2012;23:1415–25.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Löfås S, Johnsson B. A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J Chem Soc Chem Commun. 1990;1526.

  35. 35.

    Peterlinz KA, Georgiadis R. Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy. Opt Commun North-Holland. 1996;130:260–6.

    CAS  Article  Google Scholar 

  36. 36.

    Grassi JH, Georgiadis RM. Temperature-dependent refractive index determination from critical angle measurements: implications for quantitative SPR sensing. Am Chem Soc. 1999.

  37. 37.

    Zhou M, Otomo A, Yokoyama S, Mashiko S. Estimation of organic molecular film structures using surface–plasmon resonance spectroscopy. Thin Solid Films. 2001;393:114–8.

    CAS  Article  Google Scholar 

  38. 38.

    Viitala T, Granqvist N, Hallila S, Raviña M, Yliperttula M. Elucidating the signal responses of multi-parametric surface plasmon resonance living cell sensing: a comparison between optical modeling and drug-MDCKII cell interaction measurements. PLoS One. Public Library of Science2013;8:e72192.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Granqvist N, Hanning A, Eng L, Tuppurainen J, Viitala T. Label-enhanced surface plasmon resonance: a new concept for improved performance in optical biosensor analysis. Sensors (Basel). Multidisciplinary Digital Publishing Institute (MDPI)2013;13:15348–63.

    CAS  Article  Google Scholar 

  40. 40.

    Karlsson R, Fält A. Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J Immunol Methods. 1997;200:121–33.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Zhao H, Brown PH, Schuck P. On the distribution of protein refractive index increments. Biophys J Biophysical Society. 2011;100:2309–17.

    CAS  Google Scholar 

  42. 42.

    Ball V, Ramsden JJ. Buffer dependence of refractive index increments of protein solutions. Biopolymers. 1998;46:489–92.

    CAS  Article  Google Scholar 

  43. 43.

    Sadowski JW, Korhonen IKJ, Peltonen JPK. Characterization of thin films and their structures in surface plasmon resonance measurements. Opt Eng. 1995;34:2581–6.

    CAS  Article  Google Scholar 

  44. 44.

    Kretschmann E, Raether H. Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch. 1968;23:2135–6.

    CAS  Google Scholar 

  45. 45.

    Hall D. Kinetic models describing biomolecular interactions at surfaces. Handb Surf Plasmon Reson. 2008;81–122.

  46. 46.

    Hamad I, Hunter AC, Szebeni J, Moghimi SM. Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Mol Immunol. 2008;46:225–32.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. “Stealth” corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surfaces B Biointerfaces. 2000;18:301–13.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Lundquist A, Hansen SB, Nordström H, Danielson UH, Edwards K. Biotinylated lipid bilayer disks as model membranes for biosensor analyses. Anal Biochem. Elsevier Inc.2010;405:153–9.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater Nature Publishing Group. 2009;8:543–57.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We are grateful to M.Sc. Tatu Lajunen, B.Sc. Riikka Nurmi, and M.Sc. Antti Louna for the help in preparing and characterizing the control liposome formulations, and to Leena Pietilä and Dr. Mari Palviainen for the help with serum collection and pooling. Liposomes coated with a lipidated oligo-guanidyl derivative were kindly supplied by Professor Stefano Salmaso, University of Padova. Financial support by the Academy of Finland (grants: #137053, #263861, #263567), Tekes—the Finnish Funding Agency for Innovation EV-Extra-Tox project and the Professor Pool—Orion Research Foundation are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tapani Viitala.

Ethics declarations

All the reported experiments are in compliance with current Finnish law.

Conflict of interest

The authors declare that they have no conflicts of interest. T.R. is affiliated with BioNavis Ltd., Ylöjärvi, Finland.

Additional information

Otto K. Kari and Tatu Rojalin contributed equally to this work

Electronic supplementary material

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kari, O.K., Rojalin, T., Salmaso, S. et al. Multi-parametric surface plasmon resonance platform for studying liposome-serum interactions and protein corona formation. Drug Deliv. and Transl. Res. 7, 228–240 (2017). https://doi.org/10.1007/s13346-016-0320-0

Download citation

Keywords

  • Multi-parametric surface plasmon resonance (MP-SPR)
  • Protein corona
  • Soft corona
  • Liposome
  • Complement system
  • Opsonin