Design and optimization of gastro-retentive microballoons for enhanced bioavailability of cinnarizine

Abstract

This study is focused on the design of gastro-retentive drug delivery system composed of hollow microspheres (microballoons) for the sustained delivery of cinnarizine (CIN). The microballoons (MBs) were prepared by the emulsion solvent diffusion method using cellulose acetate butyrate (CAB) as the hosting polymer and absolute ethanol (ETH) and dichloromethane (DCM) as solvents. A 33 full factorial experimental design was adopted to study the effect of different variables and to find an optimum formula with desired properties. Prepared microballoons showed high drug loading capacities and controlled release behaviour. The optimum formulation was chosen on the basis of achieving maximum values for both drug loading capacity and release efficiency as well as having suitable size. The optimized MB (MB-F21) was composed of 200 mg CIN and 400 mg CAB with a DCM/ETH ratio of 2:1. Scanning electron microscopy for the optimum formulation showed a spherical outline with internal porous structure. An in vivo study using human volunteers was performed by determination of CIN concentration in the plasma using the liquid chromatography-mass spectrometry (LC-MS) method. Results proved the superiority of the designed formulation over the market product Stuval® tablets in bioavailability parameters comprising T max as well as area under the plasma CIN concentration-time curve (AUC0–24 h) and AUC0–∞ values. Also, the significantly greater value of mean residence time (MRT) in case of MB-F21 indicates its higher gastric residence time and proves the advantages of micro-multiparticulate dosage forms over conventional one.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Bechgaard H, Ladefoged K. Distribution of pellets in the gastrointestinal tract. The influence on transit time exerted by the density or diameter of pellets. J Pharm Pharmacol. 1978;30:690–2.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Bechgaard H, Nielson GH. Controlled release multiple units and single unit doses. Drug Dev Ind Pharm. 1978;4:53–67.

    CAS  Article  Google Scholar 

  3. 3.

    Vervaet C, Baert L, Remon JP. Extrusion-spheronization: a literature review. Int J Pharm. 1995;116:131–46.

    CAS  Article  Google Scholar 

  4. 4.

    Streubel A, Siepmann J, Bodmeier R. Multiple unit gastroretentive drug delivery systems: a new preparation method for low density microparticles. J Microencapsul. 2003;20(3):329–47.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Scholtz AW et al. Treatment of vertigo due to acute unilateral vestibular loss with a fixed combination of cinnarizine and dimenhydrinate: a double-blind, randomized, parallel-group clinical study. Clin Ther. 2004;26(6):866–77.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Alhnan MA, Murdan S, Basit AW. Encapsulation of poorly soluble basic drugs into enteric microparticles: a novel approach to enhance their oral bioavailability. Int J Pharm. 2011;416:55–60.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Novotny M, Kostrica R. Fixed combination of cinnarizine and dimenhydrinate vs betahistine dimesylate in the treatment of Meniere’s disease: a randomized, double-blind, parallel group clinical study. Int Tinnitus J. 2002;8(2):115–23.

    CAS  PubMed  Google Scholar 

  8. 8.

    Togha M, Ashrafian H, Tajik P. Open-label trial of cinnarizine in migraine prophylaxis. Headache. 2006;46(3):498–502.

    Article  PubMed  Google Scholar 

  9. 9.

    Turner D et al. Pediatric cinnarizine overdose and toxicokinetics. Pediatrics. 2006;117(5):1067–9.

    Article  Google Scholar 

  10. 10.

    Shi S et al. Pharmacokinetics, tissue distribution and safety of cinnarizine delivered in lipid emulsion. Int J Pharm. 2010;383:264–70.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Loftsson T, Hreinsdóttir D, Másson M. Evaluation of cyclodextrin solubilization of drugs. Int J Pharm. 2005;302:18–28.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Kalava BS, Demirel M, Yazan Y. Physicochemical characterisation and dissolution properties of cinnarizine solid dispersions. Turk J Pharm Sci. 2005;2:51–62.

    CAS  Google Scholar 

  13. 13.

    Radke RS et al. Formulation and evaluation of sustained release system for an effective management of motion sickness. RJPT. 2008;1(4):426–9.

    CAS  Google Scholar 

  14. 14.

    Scott LJ, Perry CM. Tramadol: a review of its use in perioperative pain. Drugs. 2000;60(1):139–76.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Chang L et al. Optimization of epirubicin nanoparticles using experimental design for enhanced intravesical drug delivery. Int J Pharm. 2009;376:195–203.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Renoux R et al. Experimentally designed optimization of direct compression tablets. Drug Dev Ind Pharm. 1996;22:103–9.

    CAS  Article  Google Scholar 

  17. 17.

    Montgomery D. Design and analysis of experiments. New York: Wiley; 1997. p. 84–6.

    Google Scholar 

  18. 18.

    Soppimath KS et al. Microspheres as floating drug delivery system to increase the gastric residence of drugs. Drug Metab Rev. 2001;33:149–60.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Obeidat WM, Price JC. Evaluation of enteric matrix microspheres prepared by emulsion-solvent evaporation using scanning electron microscopy. J Microencapsul. 2004;21:47–57.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Obeidat WM, Price JC. Preparation and in vitro evaluation of propylthiouracil microspheres made of Eudragit RL 100 and cellulose acetate butyrate polymers using the emulsion-solvent evaporation method. J Microencapsul. 2005;22(3):281–9.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Miyazaki Y et al. Release profiles of theophylline from microspheres consisting of dextran derivatives and cellulose acetate butyrate: effect of polyion complex formation. Drug Dev Ind Pharm. 2003;29:795–804.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Rokhade AP et al. Preparation and evaluation of cellulose acetate butyrate and poly(ethylene oxide) blend microspheres for gastroretentive floating delivery of repaglinide. J Appl Polym Sci. 2007;105:2764–71.

    CAS  Article  Google Scholar 

  23. 23.

    Gupta PK, Robinson JR. Oral controlled-release delivery. In: Kydonieus A, editor. Treatise on controlled drug delivery. New York: Marcel Dekker; 1992. p. 255–313.

    Google Scholar 

  24. 24.

    Tang Y et al. Sustained release of hydrophobic and hydrophilic drugs from a floating dosage form. Int J Pharm. 2007;336:159–65.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Kawashima Y et al. Hollow microspheres for use as a floating controlled drug delivery system in the stomach. J Pharm Sci. 1992;81:135–40.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Huang YB et al. Once-daily propranolol extended-release tablet dosage form: formulation design and in vitro/in vivo investigation. Eur J Pharm Biopharm. 2004;58:607–14.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Ahmed MM et al. Emulsification/internal gelation as a method for preparation of diclofenac sodium-sodium alginate microparticles. Saudi Pharm J. 2013;21(1):61–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Sato Y et al. Physicochemical properties to determine the buoyancy of hollow microspheres (microballoons) prepared by the emulsion solvent diffusion method. Eur J Pharm Biopharm. 2003;55:297–304.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Sato Y et al. In vitro evaluation of floating and drug releasing behaviors of hollow microspheres (microballoons) prepared by the emulsion solvent diffusion method. Eur J Pharm Biopharm. 2004;57:235–43.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Martinez MN, Amidon GL. A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol. 2002;42(6):620–43.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Jain SK et al. Calcium silicate based microspheres of repaglinide for gastroretentive floating drug delivery: preparation and in vitro characterization. J Control Release. 2005;107(2):300–9.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Patel DM et al. Floating granules of ranitidine hydrochloride-gelucire 43/01: formulation optimization using factorial design. AAPS Pharm Sci Tech. 2007;8(2):30.

    Google Scholar 

  33. 33.

    Sato Y et al. In vitro and in vivo evaluation of riboflavin-containing microballoons for a floating controlled drug delivery system in healthy humans. Int J Pharm. 2004;275(1–2):97–107.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Varshosaz J, Tabbakhian M, Zahrooni M. Development and characterization of floating microballoons for oral delivery of cinnarizine by a factorial design. J Microencapsul. 2007;24(3):253–62.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Mastiholimath VS et al. In vitro and in vivo evaluation of ranitidine hydrochloride ethyl cellulose floating microparticles. J Microencapsul. 2008;25(5):307–14.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Nepal PR, Chun M, Choi H. Preparation of floating microspheres for fish farming. Int J Pharm. 2007;341:85–90.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Kawashima Y et al. Preparation of multiple unit hollow microspheres (microballoons) with acrylic resin containing tranilast and their drug release characteristics (in vitro) and floating behavior (in vivo). J Control Release. 1991;16:279–90.

    CAS  Article  Google Scholar 

  38. 38.

    Kamel R, Basha M, Elawdan S. Development and evaluation of long-acting epidural “smart” thermoreversible injection loaded with spray-dried polymeric nanospheres using experimental design. J Drug Target. 2013;21(3):277–90.

    CAS  Article  Google Scholar 

  39. 39.

    Birajdar A et al. Design and evaluation of glipizide containing microballoons for floating controlled drug delivery system. IJPI’s J Pharm Cosmet. 2012;2(8):43–5.

    Google Scholar 

  40. 40.

    Hooda A et al. Optimization and evaluation of gastroretentive ranitidine HCl microspheres by using design expert software. Int J Biol Macromol. 2012;51(5):691–700.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Porwal A, Swami G, Saraf S. Preparation and evaluation of sustained release microballoons of propranolol. DARU. 2011;19(3):193–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Sood A, Panchagnula R. Role of dissolution studies in controlled release drug delivery system. STP Pharma Sci. 1999;9(2):157–68.

    CAS  Google Scholar 

  43. 43.

    Kamel R, Mahmoud A, El-Feky G. Double-phase hydrogel for buccal delivery of tramadol. Drug Dev Ind Pharm. 2012;38(4):468–83.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Thanoo BC, Sunny MC, Jayakrishnan A. Oral sustained release drug delivery systems using polycarbonate microspheres capable of floating on the gastric fluids. J Pharm Pharmacol. 1993;45:21–4.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res. 2004;27(1):1–12.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Basalious EB, Shawky N, Badr-Eldin SM. SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: development and optimization. Int J Pharm. 2010;391:203–11.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rabab Kamel.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ammar, H.O., Ghorab, M., Kamel, R. et al. Design and optimization of gastro-retentive microballoons for enhanced bioavailability of cinnarizine. Drug Deliv. and Transl. Res. 6, 210–224 (2016). https://doi.org/10.1007/s13346-016-0280-4

Download citation

Keywords

  • Cinnarizine
  • Microballoons
  • Gastro-retentive
  • Sustained release
  • Bioavailability