Preclinical evaluation of collagen type I scaffolds, including gelatin-collagen microparticles and loaded with a hydroglycolic Calendula officinalis extract in a lagomorph model of full-thickness skin wound

Abstract

Previously, we have developed collagen type I scaffolds including microparticles of gelatin-collagen type I (SGC) that are able to control the release of a hydroglycolic extract of the Calendula officinalis flower. The main goal of the present work was to carry out the preclinical evaluation of SGC alone or loaded with the C. officinalis extract (SGC-E) in a lagomorph model of full-thickness skin wound. A total of 39 rabbits were distributed in three groups, of 13 animals each. The first group was used to compare wound healing by secondary intention (control) with wound healing observed when wounds were grafted with SGC alone. Comparison of control wounds with wounds grafted with SGC-E was performed in the second group, and comparison of wounds grafted with SGC with wounds grafted with SGC-E was performed in the third group. Clinical follow-ups were carried in all animals after surgery, and histological and histomorphometric analyses were performed on tissues taken from the healed area and healthy surrounding tissue. Histological and histomorphometric results indicate that grafting of SGC alone favors wound healing and brings a better clinical outcome than grafting SGC-E. In vitro collagenase digestion data suggested that the association of the C. officinalis extract to SGC increased the SGC-E cross-linking, making it difficult to degrade and affecting its biocompatibility.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Bello SA, Pereria R, Fontanilla MR. Elaboración de tejido conectivo artificial autólogo de mucosa oral y evaluación de su desempeño como cobertura biológica en lesiones mucosas inducidas en conejos. Rev Fed Odontol Colomb. 2004;20:20–4.

    Google Scholar 

  2. 2.

    Espinosa L, Sosnik A, Fontanilla MR. Development and preclinical evaluation of acellular collagen scaffolding and autologous artificial connective tissue in the regeneration of oral mucosa wounds. Tissue Eng A. 2010;16(5):1667–79.

    CAS  Article  Google Scholar 

  3. 3.

    Fontanilla MR, Espinosa LG. In vitro and in vivo assessment of oral autologous artificial connective tissue characteristics that influence its performance as a graft. Tissue Eng A. 2012;18(17–18):1857–66.

    CAS  Article  Google Scholar 

  4. 4.

    Jansen RG, Kuijpers-Jagtman AM, van Kuppevelt TH, Von den Hoff JW. Collagen scaffolds implanted in the palatal mucosa. J Craniofac Surg. 2008;19(3):599–608.

    PubMed  Article  Google Scholar 

  5. 5.

    Wei PC, Laurell L, Lingen MW, Geivelis M. Acellular dermal matrix allografts to achieve increased attached gingiva. Part 2. A histological comparative study. J Periodontol. 2002;73(3):257–65.

    PubMed  Article  Google Scholar 

  6. 6.

    Wagshall E, Lewis Z, Babich SB, Sinensky MC, Hochberg M. Acellular dermal matrix allograft in the treatment of mucogingival defects in children: illustrative case report. ASDC J Dent Child. 2002;69(1):39–43. 11.

    PubMed  Google Scholar 

  7. 7.

    Thomas LJ, Emmadi P, Thyagarajan R, Namasivayam A. A comparative clinical study of the efficacy of subepithelial connective tissue graft and acellular dermal matrix graft in root coverage: 6 months follow-up observation. J Indian Soc Periodontol. 2013;17(4):478–83.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Taras JS, Sapienza A, Roach JB, Taras JP. Acellular dermal regeneration template for soft tissue reconstruction of the digits. J Hand Surg [Am]. 2010;35(3):415–21.

    Article  Google Scholar 

  9. 9.

    Yannas IV. Emerging rules for inducing organ regeneration. Biomaterials. 2013;34(2):321–30.

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Moiemen NS, Vlachou E, Staiano JJ, Thawy Y, Frame JD. Reconstructive surgery with Integra dermal regeneration template: histologic study, clinical evaluation, and current practice. Plast Reconstr Surg. 2006;117(7 Suppl):160S–74S.

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    D’Ambrosio M, Ciocarlan A, Colombo E, Guerriero A, Pizza C, Sangiovanni E, et al. Structure and cytotoxic activity of sesquiterpene glycoside esters from calendula officinalis L.: studies on the conformation of viridiflorol. Phytochemistry. 2015;117:1–9.

    PubMed  Article  Google Scholar 

  12. 12.

    Okuma CH, Andrade TA, Caetano GF, Finci LI, Maciel NR, Topan JF, et al. Development of lamellar gel phase emulsion containing marigold oil (calendula officinalis) as a potential modern wound dressing. Eur J Pharm Sci. 2015;71:62–72.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Alnuqaydan AM, Lenehan CE, Hughes RR, Sanderson BJ. Extracts from calendula officinalis offer in vitro protection against H2 O2 induced oxidative stress cell killing of human skin cells. Phytother Res. 2015;29(1):120–4.

    PubMed  Article  Google Scholar 

  14. 14.

    Hu JJ, Cui T, Rodriguez-Gil JL, Allen GO, Li J, Takita C, et al. Complementary and alternative medicine in reducing radiation-induced skin toxicity. Radiat Environ Biophys. 2014;53(3):621–6.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Lam PL, Kok SH, Bian ZX, Lam KH, Tang JC, Lee KK, et al. D-glucose as a modifying agent in gelatin/collagen matrix and reservoir nanoparticles for calendula officinalis delivery. Colloids Surf B: Biointerfaces. 2014;117:277–83.

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Mishra AK, Mishra A, Verma A, Chattopadhyay P. Effects of calendula essential Oil-based cream on biochemical parameters of skin of albino rats against ultraviolet B radiation. Sci Pharm. 2012;80(3):669–83.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  17. 17.

    Fonseca YM, Catini CD, Vicentini FT, Cardoso JC, De Cavalcanti Albuquerque Jr RL, Vieira Fonseca MJ. Efficacy of marigold extract-loaded formulations against UV-induced oxidative stress. J Pharm Sci. 2011;100(6):2182–93.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Parente LM, Andrade MA, Brito LA, Moura VM, Miguel MP, Lino-Junior Rde S, et al. Angiogenic activity of calendula officinalis flowers L. in rats. Acta Cir Bras. 2011;26(1):19–24.

    PubMed  Google Scholar 

  19. 19.

    Vargas EA, Do Vale Baracho NC, de Brito J, De Queiroz AA. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater. 2010;6(3):1069–78.

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Chandran PK, Kuttan R. Effect of calendula officinalis flower extract on acute phase proteins, antioxidant defense mechanism and granuloma formation during thermal burns. J Clin Biochem Nutr. 2008;43(2):58–64.

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Eghdampour F, Jahdie F, Kheyrkhah M, Taghizadeh M, Naghizadeh S, Hagani H. The impact of aloe vera and calendula on perineal healing after episiotomy in primiparous women: a randomized clinical trial. J Caring Sci. 2013;2(4):279–86.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Duran V, Matic M, Jovanovc M, Mimica N, Gajinov Z, Poljacki M, et al. Results of the clinical examination of an ointment with marigold (calendula officinalis) extract in the treatment of venous leg ulcers. Int J Tissue React. 2005;27(3):101–6.

    PubMed  CAS  Google Scholar 

  23. 23.

    Pommier P, Gomez F, Sunyach MP, D’Hombres A, Carrie C, Montbarbon X. Phase III randomized trial of calendula officinalis compared with trolamine for the prevention of acute dermatitis during irradiation for breast cancer. J Clin Oncol. 2004;22(8):1447–53.

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Preethi KC, Kuttan G, Kuttan R. Anti-inflammatory activity of flower extract of Calendula officinalis Linn and its possible mechanism of action. Indian J Exp Biol. 2009;47(2):113–20.

    PubMed  Google Scholar 

  25. 25.

    Basch E, Bent S, Foppa I, Haskmi S, Kroll D, Mele M, et al. Marigold (Calendula officinalis L.): an evidence-based systematic review by the natural standard research collaboration. J Herb Pharmacother. 2006;6(3–4):135–59.

    PubMed  Article  Google Scholar 

  26. 26.

    Iauk L, Lo Bue AM, Milazzo I, Rapisarda A, Blandino G. Antibacterial activity of medicinal plant extracts against periodontopathic bacteria. Phytother Res. 2003;17(6):599–604.

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Jimenez-Medina E, Garcia-Lora A, Paco L, Algarra I, Collado A, Garrido F. A new extract of the plant calendula officinalis produces a dual in vitro effect: cytotoxic anti-tumor activity and lymphocyte activation. BMC Cancer. 2006;6:119.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Jimenez RA, Millan D, Suesca E, Sosnik A, Fontanilla MR. Controlled release of an extract of calendula officinalis flowers from a system based on the incorporation of gelatin-collagen microparticles into collagen I scaffolds: design and in vitro performance. Drug Deliv Transl Res. 2015;5(3):209–18.

    PubMed  Article  Google Scholar 

  29. 29.

    Khodr B, Khalil Z. Modulation of inflammation by reactive oxygen species: implications for aging and tissue repair. Free Radic Biol Med. 2001;30(1):1–8.

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150(1):76–85.

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Myers P, Sorin A. “Lagomorpha” (On-line). In: animal diversity web. 2002. http://animaldiversity.org/accounts/Lagomorpha/. Accessed 07 Sep 2015.

  32. 32.

    Pelizzo G, Avanzini MA, Icaro Cornaglia A, Osti M, Romano P, Avolio L, et al. Mesenchymal stromal cells for cutaneous wound healing in a rabbit model: pre-clinical study applicable in the pediatric surgical setting. J Transl Med. 2015;13:219.

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Fonseca YM, Catini CD, Vicentini FT, Nomizo A, Gerlach RF, Fonseca MJ. Protective effect of calendula officinalis extract against UVB-induced oxidative stress in skin: evaluation of reduced glutathione levels and matrix metalloproteinase secretion. J Ethnopharmacol. 2010;127(3):596–601.

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Braga PC, Dal Sasso M, Culici M, Spallino A, Falchi M, Bertelli A, et al. Antioxidant activity of calendula officinalis extract: inhibitory effects on chemiluminescence of human neutrophil bursts and electron paramagnetic resonance spectroscopy. Pharmacology. 2009;83(6):348–55.

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Herold A, Cremer L, Calugaru A, Tamas V, Ionescu F, Manea S, et al. Antioxidant properties of some hydroalcoholic plant extracts with antiinflammatory activity. Roum Arch Microbiol Immunol. 2003;62(3–4):217–27.

    PubMed  Google Scholar 

  36. 36.

    Chuang TH, Stabler C, Simionescu A, Simionescu DT. Polyphenol-stabilized tubular elastin scaffolds for tissue engineered vascular grafts. Tissue Eng A. 2009;15(10):2837–51. doi:10.1089/ten.TEA.2008.0394.

    CAS  Article  Google Scholar 

  37. 37.

    Papadopoulou A, Frazier R. Characterization of protein–polyphenol interactions. Trends Food Sci Technol. 2004;15:186–90.

    CAS  Article  Google Scholar 

  38. 38.

    Manickam B, Sreedharan R, Elumalai M. ‘Genipin’—the natural water soluble cross-linking agent and its importance in the modified drug delivery systems: an overview. Curr Drug Deliv. 2014;11(1):139–45.

    PubMed  CAS  Article  Google Scholar 

  39. 39.

    Zeugolis DI, Paul RG, Attenburrow G. The influence of a natural cross-linking agent (Myrica rubra) on the properties of extruded collagen fibres for tissue engineering applications. Mater Sci Eng C. 2010;30:190–5.

    CAS  Article  Google Scholar 

  40. 40.

    He L, Mu C, Shi J, Zhang Q, Shi B, Lin W. Modification of collagen with a natural cross-linker, procyanidin. Int J Biol Macromol. 2011;48(2):354–9.

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Wauters P, Eeckhout Y, Vaes G. Oxidation products are responsible for the resistance to the action of collagenase conferred on collagen by (+)-catechin. Biochem Pharmacol. 1986;35(17):2971–3.

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Madhan B, Subramanian V, Rao JR, Nair BU, Ramasami T. Stabilization of collagen using plant polyphenol: role of catechin. Int J Biol Macromol. 2005;37(1–2):47–53.

    PubMed  CAS  Article  Google Scholar 

  43. 43.

    Madhan B, Krishnamoorthy G, Rao JR, Nair BU. Role of green tea polyphenols in the inhibition of collagenolytic activity by collagenase. Int J Biol Macromol. 2007;41(1):16–22.

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Kuttan R, Donnelly P, Ferrante D. Collagen treated with (+)-catechin becomes resistant to the action of mammalian collagenase. Experientia. 1981;37(3):221–3.

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

The Colombian Department of Science, Technology, and Innovation (COLCIENCIAS) (grant 1101-521-28661) and the Universidad Nacional de Colombia (MSc Program in Microbiology) supported this work. We would like to thank Dr. Luis Fernando Ospina, Oswaldo Escobar, and the members of the Tissue Engineering Group for helping us with the animal experiments; Dr. Lucía Botero for her histological advice; and PhD candidate Julia A. Morales for editing the manuscript. Diana Millán and Ronald A. Jiménez were supported by COLCIENCIAS (grant 1101-521-28661).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. R. Fontanilla.

Ethics declarations

All institutional and national guidelines for the care and use of laboratory animal were followed.

Conflict of interest

Diana Millán, Ronald A. Jiménez, Luis E. Nieto, Itali Linero, Manuel Laverde, and Marta R. Fontanilla declare that they have no conflict of interest. The authors declare no competing financial interests.

Additional information

D. Millán and R. A. Jiménez contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supp. 1

Data sheet of Calendula officinalis flower extract. Full details on batch number, content, preparation method, and quality control of the hydroglycolic C. officinalis flower extract are presented.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Millán, D., Jiménez, R.A., Nieto, L.E. et al. Preclinical evaluation of collagen type I scaffolds, including gelatin-collagen microparticles and loaded with a hydroglycolic Calendula officinalis extract in a lagomorph model of full-thickness skin wound. Drug Deliv. and Transl. Res. 6, 57–66 (2016). https://doi.org/10.1007/s13346-015-0265-8

Download citation

Keywords

  • Collagen type I
  • Scaffolds
  • Gelatin-collagen microparticles
  • Calendula officinalis L. flowers extract
  • Full-thickness wounds