Skip to main content

Scrolls: novel microparticulate systems for enhanced delivery to/across the skin

Abstract

We describe the scroll system as a new microparticulate structured delivery system for enhanced delivery to/across the skin. The basic components of the scroll system are non-ionic surface active of the type of alkyl polyglycol ethers and a glycol. The unique structures are preserved with addition of various ingredients such as polymers, vegetable oils, pharmaceuticals, and permeation enhancers but are dismissed when amphiphile is withdrawn. The microparticles have a unique scroll structure with multiple “wrapping.” Besides enabling superior permeation of drugs into/across the skin, the drugs delivered by scroll systems were more effective in vitro and in vivo compared to controls. Model drugs presented high entrapment capacity in scroll systems. The systems are stable over time and are safe for skin application. In order to form, they require a small number of ingredients, simple preparation method, and are environment friendly. The scroll systems may be new potential tools in the dermal/transdermal pharmaceutical and cosmetic industry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Hashimoto N, Nakamichi N, Uwafuji S, Yoshida K, Sugiura T, Tsuji A, et al. ATP binding cassette transporters in two distinct compartments of the skin contribute to transdermal absorption of a typical substrate. J Control Release. 2013;165:54–61.

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Touitou E, Ainbinder D. Ethosomes—an innovative carrier for enhanced delivery into and across the skin: original research article: ethosomes—novel vesicular carriers for enhanced delivery: characterization skin penetration properties 2000. J Control Release. 2014;190:44–6.

    PubMed  Article  Google Scholar 

  3. 3.

    Ainbinder D, Paolino D, Fresta M, Touitou E. Drug delivery applications with ethosomes. J Biomed Nanotechnol. 2010;5:558–68.

    Article  Google Scholar 

  4. 4.

    Perumal O, Michniak-Kohn B, Touitou E, Roberts MS. A special issue on skin nanotechnology. J Biomed Nanotechnol. 2010;5:405–7.

    Article  Google Scholar 

  5. 5.

    Eroğlu İ, Gökçe EH, Tsapis N, Tanrıverdi ST, Gökçe G, Fattal E, et al. Evaluation of characteristics and in vitro antioxidant properties of RSV loaded hyaluronic acid-DPPC microparticles as a wound healing system. Colloids Surf B: Biointerfaces. 2015;126:50–7.

    PubMed  Article  Google Scholar 

  6. 6.

    Jiménez RA, Millán D, Suesca E, Sosnik A, Fontanilla MR. Controlled release of an extract of calendula officinalis flowers from a system based on the incorporation of gelatin-collagen microparticles into collagen I scaffolds: design and in vitro performance. Drug Deliv Transl Res. 2015;5(3):209–18.

    PubMed  Article  Google Scholar 

  7. 7.

    Zhang YQ, Ji SZ, Fang H, Zheng YJ, Luo PF, Wu HB, Wu MJ, Wang ZH, Xiao SC, Xia ZF. Use of amniotic microparticles coated with fibroblasts overexpressing SDF-1a to create an environment conducive to neovascularization for repair of full-thickness skin defects. Cell Transplant. 2015.

  8. 8.

    Takikawa M, Ishihara M, Takabayashi Y, Sumi Y, Takikawa M, Yoshida R, et al. Enhanced healing of mitomycin C-treated healing-impaired wounds in rats with PRP-containing fragmin/protamine microparticles (PRP&F/P MPs). J Plast Surg Hand Surg. 2015;13:1–7.

    Google Scholar 

  9. 9.

    Paithankar DY, Sakamoto FH, Farinelli WA, Kositratna G, Blomgren RD, Meyer TJ, et al. Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles. J Invest Dermatol. 2015;135(7):1727–34.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  10. 10.

    Feng S, Nie L, Zou P, Suo J. Drug-loaded PLGA-mPEG microparticles as treatment for atopic dermatitis-like skin lesions in BALB/c mice model. J Microencapsul. 2015;32(2):201–9.

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Lam PL, Gambari R. Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries. J Control Release. 2014;178:25–45.

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Haynes DH, Kirkpatrick AF. Ultra-long-duration local anesthesia produced by injection of lecithin-coated methoxyflurane microdroplets. Anesthesiology. 1985;63(5):490–9.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Prasanth VV, Akash Chakraborthy M, Sam TM, Rinku M. Microspheres—an overview. Int J Res Pharm Biomed Sci. 2011;2(2):332–8.

    Google Scholar 

  14. 14.

    Martins RM, Siqueira S, Fonseca MJ, Freitas LA. Skin penetration and photoprotection of topical formulations containing benzophenone-3 solid lipid microparticles prepared by the solvent-free spray-congealing technique. J Microencapsul. 2014;31(7):644–53.

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Krieg E, Shirman E, Weissman H, Shimoni E, Wolf SG, Pinkas I, et al. Supramolecular gel based on a perylene diimide dye: multiple stimuli responsiveness, robustness, and photofunction. J Am Chem Soc. 2009;131:14365–73.

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Levy-Lior A, Shimoni E, Schwartz O, Gavish-Regev E, Oron D, Oxford G, et al. Guanine-based biogenic photonic-crystal arrays in fish and spiders. Adv Funct Mater. 2010;20:320–9.

    CAS  Article  Google Scholar 

  17. 17.

    Rougier R, Dupuis D, Roguet R, Lotte C. The measurement of the stratum corneum reservoir. A predictive method for in vivo percutaneous absorption studies: influence of the application time. J Invest Dermatol. 1985;84:66–8.

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    (http://imagej.nih.gov/ij/features.html).

  19. 19.

    Touitou E, Watenfeld R. Transderm. 1987; Life Sci. 1.

  20. 20.

    Aloe L, Tuveri MA, Levi-Montalcini R. Studies on carrageenan-induced arthritis in adult rats: presence of nerve growth factor and role of sympathetic innervation. Reumatol Int. 1992;12:213–6.

    CAS  Article  Google Scholar 

  21. 21.

    Cohen G, Natsheh H, Sunny Y, Bawiec CR, Touitou E, Lerman MA, Lazarovici P, Lewin PA. Enhanced therapeutic anti-inflammatory effect of betamethasone on topical administration with low-frequency, low-intensity (20 kHz, 100 mW/cm < sup > 2</sup>) Ultrasound Exposure on Carrageenan-Induced Arthritis in a Mouse Model. Ultrasound Med. Biol. 2015. In Press.

  22. 22.

    Shumilov M, Bercovich R, Duchi S, Ainbinder D, Touitou E. Ibuprofen transdermal ethosomal gel: characterization and efficiency in animal models. J Biomed Nanotechnol. 2010;6:1–8.

    Article  Google Scholar 

  23. 23.

    Loux JJ, Depalma PD, Yankell SL. Antipyretic testing of aspirin in rats. Toxicol Appl Pharmacol. 1972;22:672.

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Duchi S, Ovadia H, Touitou E. Nasal administration of drugs as a new non-invasive strategy for efficient treatment of multiple sclerosis. J Neuroimmunol. 2013;15:32–40.

    Article  Google Scholar 

  25. 25.

    Monteiro-Riviere NA, Inman AO, Snider TH, Blank JA, Hobson DW. Comparison of an in vitro skin model to normal human skin for dermatological research. Microsc Res Tech. 1997;37:172–9. 18.

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Kandárová H, Hayden P, Klausner M, Kubilus J, Sheasgreen J. An in vitro skin irritation test (SIT) using the EpiDerm reconstructed human epidermal (RHE) model. J Vis Exp. 2009;13:e1366.

    Google Scholar 

  27. 27.

    Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–8.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  28. 28.

    Hampton T. Breaking barriers in transdermal drug delivery. J Am Med Assoc. 2005;293:2083.

    CAS  Article  Google Scholar 

  29. 29.

    Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063–72.

    PubMed  Article  Google Scholar 

  30. 30.

    Touitou E, Barry BW, editors. Enhancement in drug delivery. Boca Raton: CRS Press, Taylor& Francis group; 2006.

    Google Scholar 

  31. 31.

    Raposo SC, Simões SD, Almeida AJ, Ribeiro HM. Advanced systems for glucocorticoids’ dermal delivery. Exp Opin Drug Deliv. 2013;10:857–77.

    CAS  Article  Google Scholar 

  32. 32.

    Rosu A, Bistriceanu S, Ibanescu C, Maria Daraba O, Lungu M. Rheological research of some polysaccharide gels loaded with nigella sativa extracts. Cellul Chem Technol. 2013;47(5–6):359–67.

    CAS  Google Scholar 

  33. 33.

    Ibanescu C, Danu M, Nanu A, Lungu M, Simionescu BC. Stability of disperse systems estimated using rheological oscillatory shear tests. Rev Roum Chim. 2010;55(11–12):933–40.

    CAS  Google Scholar 

  34. 34.

    Elworthy PH. The size, shape and hydration of cetomacrogol 1000 micelles. J Pharm Pharmacol. 1960;12(Suppl):260–6.

    PubMed  Article  Google Scholar 

  35. 35.

    Elworthy PH. The critical micelle concentration of cetomacrogol 1000. J Pharm Pharmacol. 1960;12:293–9.

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Macfarlane CB. Kolloid-ZZ Polym. 1970;239(2):682–5.

    CAS  Article  Google Scholar 

  37. 37.

    Sterpone F, Briganti G, Pierleoni C. Sphere versus cylinder: the effect of packing on the structure of nonionic C12E6 micelles. Langmuir. 2009;25:8960–7.

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mrs. Hiba Natsheh, Dr. Jana Zailer, and Mrs. Shatha Boukaileh from Prof. Elka Touitou’s lab for help and assistance in the animal experiments, Franz diffusion cells experiments and HPLC assays; Mr. Liron Issman from Prof. Yeshayahu Talmon’s lab in the Technion technology Institute Haifa, Dr. Eyal Shimoni from the Electron microscopy unit in Weizmann Institute Rehovot for their assistance with cryo-SEM imaging and Dr. Anna Radko from the Nanoscience and Nanotechnology Center for assistance with SPM and Raman spectroscopy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elka Touitou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Animal studies

All procedures performed in studies involving animals were in accordance with the ethical standards of the Hebrew University and Hadassah Medical Center.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Allon, I., Touitou, E. Scrolls: novel microparticulate systems for enhanced delivery to/across the skin. Drug Deliv. and Transl. Res. 6, 24–37 (2016). https://doi.org/10.1007/s13346-015-0264-9

Download citation

Keywords

  • Scrolls
  • Transdermal
  • Topical
  • Terbinafine hydrochloride
  • Bacitracin
  • Betamethasone diproprionate
  • Ibuprofen
  • Tramadol hydrochloride