Skip to main content

Advertisement

Log in

Inkjet printing of insulin microneedles for transdermal delivery

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Inkjet printing technology was used to apply insulin polymeric layers on metal microneedles for transdermal delivery. A range of various polymers such as gelatin (GLN), polyvinyl caprolactame-polyvinyl acetate-polyethylene glycol (SOL), poly(2-ethyl-2-oxazoline) (POX) and trehalose (THL) were assessed for their capacity to form thin uniform and homogeneous layers that preserve insulin intact. Atomic force microscopy (AFM) showed homogeneous insulin–polymer layers without any phase separation while SOL demonstrated the best performance. Circular discroism (CD) analysis of rehydrated films showed that insulin’s alpha helices and β–sheet were well preserved for THL and SOL. In contrast, GLN and POX insulin layers revealed small band shifts indicating possible conformational changes. Insulin release in Franz diffusion cells from MNs inserted into porcine skin showed rapid release rates for POX and GLN within the first 20 min. Inkjet printing was proved an effective approach for transdermal delivery of insulin in solid state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hemmingsen B, Lund S, Gluud C, Vaag A, Almdal T, Hemmingsen C, et al. Intensive glycaemic control for patients with type 2 diabetes: systematic review with meta-analysis and trial sequential analysis of randomised clinical trials. BMJ. 2011;343:d6898.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Asche C, Shane-McWhorter L, Raparla S. Health economics and compliance of vials/syringes versus pen devices: a review of the evidence. Diabetes Technol Ther. 2010;12(S1):S-101–8.

    Article  Google Scholar 

  3. Korytkowski M, Niskanen L, Asakura T. FlexPen®: addressing issues of confidence and convenience in insulin delivery. Clin Ther. 2005;27:S89–100.

    Article  PubMed  Google Scholar 

  4. Aronson R. The role of comfort and discomfort in insulin therapy. Diabetes Technol Ther. 2012;14(8):741–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Derraik J, Rademaker M, Cutfield W, Peart J, Jefferies C, Hofman P. Poorer glycaemic control is associated with increased skin thickness at injection sites in children with type 1 diabetes. Int J Pediatr Endocrinol. 2014;2014(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Prausnitz M, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arora A, Prausnitz M, Mitragotri S. Micro-scale devices for transdermal drug delivery. Int J Pharm. 2008;364(2):227–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim N, Lee M, Kim K, Lee J, Lee K, Park J, et al. Polyplex-releasing microneedles for enhanced cutaneous delivery of DNA vaccine. J Control Release. 2014;179:11–7.

    Article  CAS  PubMed  Google Scholar 

  9. Vimalavathini R, Gitanjali B. Effect of temperature on the potency and pharmacological action of insulin. Indian J Med Res. 2009;130(2):166–9.

    CAS  PubMed  Google Scholar 

  10. Ye H, Hill J, Kauffman J, Gryniewicz C, Han X. Detection of protein modifications and counterfeit protein pharmaceuticals using isotope tags for relative and absolute quantification and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry: studies of insulins. Anal Biochem. 2008;379(2):182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fonte P, Soares S, Costa A, Andrade J, Seabra V, Reis S, et al. Effect of cryoprotectants on the porosity and stability of insulin-loaded PLGA nanoparticles after freeze-drying. Biomatter. 2012;2(4):329–39.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen M, Ling M, Lai K, Pramudityo E. Chitosan microneedle patches for sustained transdermal delivery of macromolecules. Biomacromolecules. 2012;13(12):4022–31.

    Article  CAS  PubMed  Google Scholar 

  13. Ling M, Chen M. Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats. Acta Biomater. 2013;9(11):8952–61.

    Article  CAS  PubMed  Google Scholar 

  14. Thyagarajapuram N, Olsen D, Middaugh C. Stabilization of proteins by recombinant human gelatins. J Pharm Sci. 2005;96(12):3304–15.

    Article  Google Scholar 

  15. Seki T, Kanbayashi H, Nagao T, Chono S, Tomita M, Hayashi M, et al. Effect of aminated gelatin on the nasal absorption of insulin in rats. Biol Pharm Bull. 2005;28(3):510–4.

    Article  CAS  PubMed  Google Scholar 

  16. Kaushik J, Bhat R. Why is trehalose an exceptional protein stabilizer: an analysis of the thermal stability of protines in the presence of the compatible osmolyte trehalose. J Biol Chem. 2003;278(29):26458–65.

    Article  CAS  PubMed  Google Scholar 

  17. Arai C, Miyake M, Matsumoto Y, Mizote A, Yoshizane C, Hanaya Y, et al. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in mice with established obesity. J Nutr Sci Vitaminol. 2013;59(5):393–401.

    Article  CAS  PubMed  Google Scholar 

  18. Homayouni A, Sadeghi F, Varshosaz J, Afrasiabi Garekani H, Nokhodchi A. Promising dissolution enhancement effect of soluplus on crystallized celecoxib obtained through antisolvent precipitation and high pressure homogenization techniques. Colloids Surf B: Biointerfaces. 2014;122:591–600.

    Article  CAS  PubMed  Google Scholar 

  19. Paaver U, Tamm I, Laidmäe I, Lust A, Kirsimäe K, Veski P, et al. Soluplus graft copolymer: potential novel carrier polymer in electrospinning of nanofibrous drug delivery systems for wound therapy. BioMed Res Int. 2014;2014:1–7.

    Article  Google Scholar 

  20. Luxenhofer R, Schulz A, Roques C, Li S, Bronich T, Batrakova E, et al. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials. 2010;31(18):4972–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tong J, Zimmerman M, Li S, Yi X, Luxenhofer R, Jordan R, et al. Neuronal uptake and intracellular superoxide scavenging of a fullerene (C60)-poly(2-oxazoline)s nanoformulation. Biomaterials. 2011;32(14):3654–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov A, et al. Poly(2-oxazoline)s as polymer therapeutics. Macromol Rapid Commun. 2012;33(19):1613–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uddin M, Scoutaris N, Klepetsanis P, Chowdhry B, Prausnitz M, Douroumis D. Inkjet printing of transdermal microneedles for the delivery of anticancer agents. Int J Pharm. 2015;S0378–5173.

  24. Schmidt S, Uhlig K, Duschl C, Volodkin D. Stability and cell uptake of calcium carbonate templated insulin microparticles. Acta Biomater. 2014;10(3):1423–30.

    Article  CAS  PubMed  Google Scholar 

  25. Liu S, Jin MN, Quan YS, Kamiyama F, Katsumi H, Sakane T, et al. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. J Control Release. 2012;161:933–41.

    Article  CAS  PubMed  Google Scholar 

  26. Tekin E, Smith P, Schubert U. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter. 2008;4(4):703.

    Article  CAS  Google Scholar 

  27. Tsai M, Hwang W. Effects of pulse voltage on the droplet formation of alcohol and ethylene glycol in a piezoelectric inkjet printing process with bipolar pulse. Mater Trans. 2008;49(2):331–8.

    Article  CAS  Google Scholar 

  28. Salerno M, Dante S, Patra N, Diaspro A. AFM measurement of the stiffness of layers of agarose gel patterned with polylysine. Microsc Res Tech. 2010;73(10):982–90.

    CAS  PubMed  Google Scholar 

  29. Gopal R, Park J, Seo C, Park Y. Applications of circular dichroism for structural analysis of gelatin and antimicrobial peptides. IJMS. 2012;13(12):3229–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Patil N, Devarajan P. Enhanced insulin absorption from sublingual microemulsions: effect of permeation enhancers. Drug Deliv Transl Res. 2014;4(5–6):429–38.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang N, Li J, Jiang W, Ren C, Li J, Xin J, et al. Effective protection and controlled release of insulin by cationic Î2-cyclodextrin polymers from alginate/chitosan nanoparticles. Int J Pharm. 2010;393(1–2):213–9.

    Article  Google Scholar 

  32. Müller N, Frank T, Kloos C, Lehmann T, Wolf G, Muller U. Randomized crossover study to examine the necessity of an injection-to-meal interval in patients with type 2 diabetes and human insulin. Diabetes Care. 2013;36(7):1865–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rodrigues J, Paraguassú-Braga F, Carvalho L, Abdelhay E, Bouzas L, Porto L. Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology. 2008;56(2):144–51.

  34. Ma R, Tang T. Current strategies to improve the bioactivity of PEEK. Int J Mol Sci. 2014;15(4):5426–45.

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Douroumis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ross, S., Scoutaris, N., Lamprou, D. et al. Inkjet printing of insulin microneedles for transdermal delivery. Drug Deliv. and Transl. Res. 5, 451–461 (2015). https://doi.org/10.1007/s13346-015-0251-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-015-0251-1

Keywords

Navigation