Skip to main content

Advertisement

Log in

Enhanced skin delivery of vismodegib by microneedle treatment

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The present study investigated the effects of microneedle treatment (maltose microneedles, Admin Pen™ 1200, and Admin Pen™ 1500) on in vitro transdermal delivery of vismodegib with different needle lengths, skin equilibration times, and microneedle insertion durations. The influence of microneedle treatment on the dimensions of microchannels (dye binding, calcein imaging, histology, and confocal microscopy studies), transepidermal water loss, and skin permeability of vismodegib was also evaluated. Skin viscoelasticity was assessed using a rheometer, and microneedle geometry was characterized by scanning electron microscopy. Permeation studies of vismodegib through dermatomed porcine ear skin were conducted using vertical Franz diffusion cells. Skin irritation potential of vismodegib formulation was assessed using an in vitro reconstructed human epidermis model. Results of the in vitro permeation studies revealed significant enhancement in permeation of vismodegib through microneedle-treated skin. As the needle length increased from 500 to 1100 and 1400 μm, drug delivery increased from 14.50 ± 2.35 to 32.38 ± 3.33 and 74.40 ± 15.86 μg/cm2, respectively. Positive correlation between drug permeability and microneedle treatment duration was observed. The equilibration time was also found to affect the delivery of vismodegib. Thus, changes in microneedle length, equilibration time, and duration of treatment altered transdermal delivery of vismodegib.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

BCC:

Basal cell carcinoma

TEWL:

Transepidermal water loss

SEM:

Scanning electron microscopy

PBS:

Phosphate-buffered saline

PEG 400:

Polyethylene glycol 400

PG:

Propylene glycol

SD:

Standard deviation

HPLC:

High-performance liquid chromatography

SIT:

Skin irritation test

PPI:

Pore permeability index

References

  1. Cowey CL. Targeted therapy for advanced basal-cell carcinoma: vismodegib and beyond. Dermatol Ther (Heidelb). 2013;3(1):17–31.

    Article  Google Scholar 

  2. Macha MA, Batra SK, Ganti AK. Profile of vismodegib and its potential in the treatment of advanced basal cell carcinoma. Cancer Manag Res. 2013;5:197–203.

    PubMed  PubMed Central  Google Scholar 

  3. Fellner C. Vismodegib (Erivedge) for advanced basal cell carcinoma. PT. 2012;37(12):670–82.

    Google Scholar 

  4. Dancik Y, Anissimov YG, Jepps OG, Roberts MS. Convective transport of highly plasma protein bound drugs facilitates direct penetration into deep tissues after topical application. Br J Clin Pharmacol. 2012;73(4):564–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kolli CS, Banga AK. Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res. 2008;25(1):104–13.

    Article  CAS  PubMed  Google Scholar 

  6. Andrews SN, Jeong E, Prausnitz MR. Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm Res. 2013;30(4):1099–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mazlela T, Mahmood T, McCrudden MTC, Torrisi BM, McAlister E, Garland MJ, et al. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci. 2013;50(5):623–37.

    Article  Google Scholar 

  9. Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bolognia JL, Jorizzo JL, Schaffer JV. Dermatology. Philadelphia: Elsevier Saunders; 2012.

    Google Scholar 

  11. Badran MM, Kuntsche J, Fahr A. Skin penetration enhancement by a microneedle device (Dermaroller) in vitro: dependency on needle size and applied formulation. Eur J Pharm Sci. 2009;36(4-5):511–23.

    Article  CAS  PubMed  Google Scholar 

  12. Hampton T. Breaking barriers in transdermal drug delivery. J Am Med Assoc. 2005;293:2083.

    Article  CAS  Google Scholar 

  13. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2004;56:603–18.

    Article  CAS  PubMed  Google Scholar 

  14. Coulman S, Allender C, Birchall J. Microneedles and other physical methods for overcoming the stratum corneum barrier for cutaneous gene therapy. Crit Rev Ther Drug Carrier Syst. 2006;23(3):205–58.

    Article  CAS  PubMed  Google Scholar 

  15. Arora A, Prausnitz MR, Mitragotri S. Micro-scale devices for transdermal drug delivery. Int J Pharm. 2008;364(2):227–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li G, Badkar A, Kalluri H, Banga AK. Microchannels created by sugar and metal microneedles: characterization by microscopy, macromolecular flux and other techniques. J Pharm Sci. 2010;99(4):1931–41.

    Article  CAS  PubMed  Google Scholar 

  17. Yuzhakov VV. The AdminPen™ microneedle device for painless & convenient drug delivery. Drug Deliv Technol. 2010;10(4):32–6.

    Google Scholar 

  18. Donnelly RF, Singh TR, Tunney MM, Morrow DI, McCarron PA, O’Mahony C, et al. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res. 2009;26(11):2513–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaur M, Ita KB, Popova IE, Parikh SJ, Bair DA. Microneedle-assisted delivery of verapamil hydrochloride and amlodipine besylate. Eur J Pharm Biopharm. 2014;86(2):284–91.

    Article  CAS  PubMed  Google Scholar 

  20. Gomaa YA, Morrow DIJ, Garland MJ, Donnelly RF, El-Khordagui LK, Meidan VM. Effects of microneedle length, density, insertion time and multiple applications on human skin barrier function: assessments by transepidermal water loss. Toxicol in Vitro. 2010;24(7):1971–8.

    Article  CAS  PubMed  Google Scholar 

  21. Cheung K, Han T, Das DB. Effect of force of microneedle insertion on the permeability of insulin in skin. J Diabetes Sci Technol. 2014;8(3):444–52.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Milewski M, Yerramreddy TR, Ghosh P, Crooks PA, Stinchcomb AL. In vitro permeation of a pegylated naltrexone prodrug across microneedle-treated skin. J Control Release. 2010;146(1):37–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gomaa YA, El-Khordagui LK, Garland MJ, Donnelly RF, McInnes F, Meidan VM. Effect of microneedle treatment on the skin permeation of a nanoencapsulated dye. J Pharm Pharmacol. 2012;64(11):1592–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. AdminPen Devices. http://adminmed.com/adminpen. Accessed 11 Sep 2014.

  25. Han T, Das DB. Permeability enhancement for transdermal delivery of large molecule using low-frequency sonophoresis combined with microneedles. J Pharm Sci. 2013;102(10):3614–22.

    Article  CAS  PubMed  Google Scholar 

  26. Olatunji O, Das DB, Garland MJ, Belaid L, Donnelly RF. Influence of array interspacing on the force required for successful microneedle skin penetration: theoretical and practical approaches. J Pharm Sci. 2013;102(4):1209–21.

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen HX, Banga AK. Determination of vismodegib by gradient reverse-phase high-performance liquid chromatography. Int J Pharmaceut Anal. 2014. In press.

  28. MatTek Corporation (2009) Protocol for: in vitro EpiDerm™ skin irritation test (EPI-200-SIT) for use with MatTek Corporation’s reconstructed human epidermal model EpiDerm (EPI-200). MatTek Corporation (Ashland, MA, USA)

  29. Kandárová H, Hayden P, Klausner M, Kubilus J, Sheasgreen J. An in vitro skin irritation test (SIT) using the EpiDerm reconstructed human epidermal (RHE) model. J Vis Exp. 2009;29:1366.

    PubMed  Google Scholar 

  30. Zhang D, Das DB, Rielly CD. Microneedle assisted micro-particle delivery from gene guns: experiments using skin-mimicking agarose gel. J Pharm Sci. 2014;103(2):613–27.

    Article  CAS  PubMed  Google Scholar 

  31. Pig ear skin. http://zyleris.com/faq.php. Accessed 11 Sep 2014.

  32. Gupta J, Gill HS, Andrews SN, Prausnitz MR. Kinetics of skin resealing after insertion of microneedles in human subjects. J Control Release. 2011;154:148–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martanto W, Moore JS, Couse T, Prausnitz MR. Mechanism of fluid infusion during microneedle insertion and retraction. J Control Release. 2006;112(3):357–61.

    Article  CAS  PubMed  Google Scholar 

  34. Yan G, Warner KS, Zhang J, Sharma S, Gale BK. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int J Pharm. 2010;391(1-2):7–12.

    Article  CAS  PubMed  Google Scholar 

  35. Verbaan FJ, Bal SM, van den Berg DJ, Groenink WH, Verpoorten H, Lüttge R, et al. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J Control Release. 2007;117(2):238–45.

    Article  CAS  PubMed  Google Scholar 

  36. Elmahjoubi E, Frum Y, Eccleston GM, Wilkinson SC, Meidan VM. Transepidermal water loss for probing full-thickness skin barrier function: correlation with tritiated water flux, sensitivity to punctures and diverse surfactant exposures. Toxicol In Vitro. 2009;23(7):1429–35.

    Article  CAS  PubMed  Google Scholar 

  37. Li WZ, Huo MR, Zhou JP, Zhou YQ, Hao BH, Liu T, et al. Super-short solid silicon microneedles for transdermal drug delivery applications. Int J Pharm. 2010;389(1-2):122–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Ashana Puri, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, for helping us to read the manuscript and provide helpful suggestions.

Conflict of interest

The authors do not have any conflicts of interest to report for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay K. Banga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.X., Banga, A.K. Enhanced skin delivery of vismodegib by microneedle treatment. Drug Deliv. and Transl. Res. 5, 407–423 (2015). https://doi.org/10.1007/s13346-015-0241-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-015-0241-3

Keywords

Navigation