Skip to main content

Particle-based technologies for osteoarthritis detection and therapy

Abstract

Osteoarthritis (OA) is a disease characterized by degradation of joints with the development of painful osteophytes in the surrounding tissues. Currently, there are a limited number of treatments for this disease, and many of these only provide temporary, palliative relief. In this review, we discuss particle-based drug delivery systems that can provide targeted and sustained delivery of imaging and therapeutic agents to OA-affected sites. We focus on technologies such as polymeric micelles and nano-/microparticles, liposomes, and dendrimers for their potential treatment and/or diagnosis of OA. Several promising studies are highlighted, motivating the continued development of delivery technologies to improve treatments for OA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Loeser RF. Osteoarthritis year in review 2013: biology. Osteoarthr Cartil. 2013;21(10):1436–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Valdes AM, Spector TD. Genetic epidemiology of hip and knee osteoarthritis. Nat Rev Rheumatol. 2011;7(1):23–32.

    PubMed  Article  Google Scholar 

  3. Issa S, Sharma L. Epidemiology of osteoarthritis: an update. Curr Rheumatol Rep. 2006;8(1):7–15.

    PubMed  Article  Google Scholar 

  4. Richette P et al. Benefits of massive weight loss on symptoms, systemic inflammation and cartilage turnover in obese patients with knee osteoarthritis. Ann Rheum Dis. 2011;70(1):139–44.

    CAS  PubMed  Article  Google Scholar 

  5. Tanamas S et al. Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arth Care Res. 2009;61(4):459–67.

    Article  Google Scholar 

  6. Buckwalter JA, Brown TD. Joint injury, repair, and remodeling: roles in post-traumatic osteoarthritis. Clin Orthop Relat Res. 2004;423:7–16.

    PubMed  Article  Google Scholar 

  7. Lee AS et al. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene. 2013;527(2):440–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med. 2010;26(3):355–69.

    PubMed  PubMed Central  Article  Google Scholar 

  9. Turkiewicz A et al. Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032. Osteoarthr Cartil. 2014;22(11):1826–32.

    CAS  PubMed  Article  Google Scholar 

  10. Kotlarz H et al. Insurer and out-of-pocket costs of osteoarthritis in the US: evidence from national survey data. Arth Rheuma. 2009;60(12):3546–53.

    Article  Google Scholar 

  11. Conaghan, P.G., et al. Impact and therapy of osteoarthritis: the Arthritis Care OA Nation 2012 survey. Clin Rheumatol, 2014.

  12. Fortin PR et al. Timing of total joint replacement affects clinical outcomes among patients with osteoarthritis of the hip or knee. Arth Rheuma. 2002;46(12):3327–30.

    Article  Google Scholar 

  13. Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377(9783):2115–26.

    PubMed  Article  Google Scholar 

  14. Bradley JD et al. Comparison of an antiinflammatory dose of ibuprofen, an analgesic dose of ibuprofen, and acetaminophen in the treatment of patients with osteoarthritis of the knee. N Engl J Med. 1991;325(2):87–91.

    CAS  PubMed  Article  Google Scholar 

  15. Kirwan JR. The effect of glucocorticoids on joint destruction in rheumatoid arthritis. The arthritis and rheumatism council low-dose glucocorticoid study group. N Engl J Med. 1995;333(3):142–6.

    CAS  PubMed  Article  Google Scholar 

  16. Kirwan JR, Rankin E. 8 Intra-articular therapy in osteoarthritis. Baillière’s Clin Rheumatol. 1997;11(4):769–94.

    CAS  Article  Google Scholar 

  17. Derendorf H et al. Pharmacokinetics and pharmacodynamics of glucocorticoid suspensions after intra-articular administration. Clin Pharm Ther. 1986;39(3):313–7.

    CAS  Article  Google Scholar 

  18. Gerwin N, Hops C, Lucke A. Intraarticular drug delivery in osteoarthritis. Adv Drug Deliv Rev. 2006;58(2):226–42.

    CAS  PubMed  Article  Google Scholar 

  19. Larsen C et al. Intra-articular depot formulation principles: role in the management of postoperative pain and arthritic disorders. J Pharm Sci. 2008;97(11):4622–54.

    CAS  PubMed  Article  Google Scholar 

  20. Nanomaterials for the local and targeted delivery of osteoarthritis drugs. J Nanomater, 2012. 2012: 13.

  21. Bertrand N et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2(5):347–60.

    CAS  PubMed  Article  Google Scholar 

  23. Peppas NA et al. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18(11):1345–60.

    CAS  Article  Google Scholar 

  24. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47(1):113–31.

    CAS  PubMed  Article  Google Scholar 

  25. Maibaum L, Dinner AR, Chandler D. Micelle formation and the hydrophobic effect†. J Phys Chem B. 2004;108(21):6778–81.

    CAS  Article  Google Scholar 

  26. Eetezadi, S., S.N. Ekdawi, and C. Allen, The challenges facing block copolymer micelles for cancer therapy: In vivo barriers and clinical translation. Adv Drug Deliv Rev, 2014.

  27. O’Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem Soc Rev. 2006;35(11):1068–83.

    PubMed  Article  CAS  Google Scholar 

  28. Oe Y et al. Actively-targeted polyion complex micelles stabilized by cholesterol and disulfide cross-linking for systemic delivery of siRNA to solid tumors. Biomaterials. 2014;35(27):7887–95.

    CAS  PubMed  Article  Google Scholar 

  29. Kazunori K et al. Block copolymer micelles as vehicles for drug delivery. J Control Release. 1993;24(1–3):119–32.

    Article  Google Scholar 

  30. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–9.

    CAS  PubMed  Article  Google Scholar 

  31. Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014;13(11):813–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Oerlemans C et al. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res. 2010;27(12):2569–89.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Choi HS et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25(10):1165–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Yamamoto Y et al. Long-circulating poly(ethylene glycol)-poly(D, L-lactide) block copolymer micelles with modulated surface charge. J Control Release. 2001;77(1–2):27–38.

    CAS  PubMed  Article  Google Scholar 

  35. Papahadjopoulos D et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A. 1991;88(24):11460–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Gao W et al. In situ growth of a stoichiometric PEG-like conjugate at a protein’s N-terminus with significantly improved pharmacokinetics. Proc Natl Acad Sci U S A. 2009;106(36):15231–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Li H et al. Matrix metalloproteinase responsive, proximity-activated polymeric nanoparticles for siRNA delivery. Adv Funct Mater. 2013;23(24):3040–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Gupta MK et al. Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. J Control Release. 2012;162(3):591–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Li H et al. Dual MMP7-proximity-activated and folate receptor-targeted nanoparticles for siRNA delivery. Biomacromolecules. 2014;16(1):192–201.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. Ponta A, Bae Y. PEG-poly (amino acid) block copolymer micelles for tunable drug release. Pharm Res. 2010;27(11):2330–42.

    CAS  PubMed  Article  Google Scholar 

  41. Wu C et al. Fabrication of complex micelles with tunable shell for application in controlled drug release. Macromol Biosci. 2009;9(12):1185–93.

    CAS  PubMed  Article  Google Scholar 

  42. Li J et al. A reduction and pH dual-sensitive polymeric vector for long-circulating and tumor-targeted siRNA delivery. Adv Mater. 2014;26(48):8217–24.

    CAS  PubMed  Article  Google Scholar 

  43. Dahlman JE et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat Nano. 2014;9(8):648–55.

    CAS  Article  Google Scholar 

  44. Convertine AJ et al. Development of a novel endosomolytic diblock copolymer for siRNA delivery. J Control Release. 2009;133(3):221–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Convertine AJ et al. pH-responsive polymeric micelle carriers for siRNA drugs. Biomacromolecules. 2010;11(11):2904–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Nelson CE et al. Balancing cationic and hydrophobic content of PEGylated siRNA polyplexes enhances endosome escape, stability, blood circulation time, and bioactivity in vivo. ACS Nano. 2013;7(10):8870–80.

    CAS  PubMed  Article  Google Scholar 

  47. Miteva M et al. Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers. Biomaterials. 2015;38:97–107.

    CAS  PubMed  Article  Google Scholar 

  48. Pittella F et al. Enhanced endosomal escape of siRNA-incorporating hybrid nanoparticles from calcium phosphate and PEG-block charge-conversional polymer for efficient gene knockdown with negligible cytotoxicity. Biomaterials. 2011;32(11):3106–14.

    CAS  PubMed  Article  Google Scholar 

  49. PANYAM J et al. Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002;16(10):1217–26.

    CAS  PubMed  Article  Google Scholar 

  50. Allen TM, Chonn A. Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett. 1987;223(1):42–6.

    CAS  PubMed  Article  Google Scholar 

  51. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48.

    CAS  PubMed  Article  Google Scholar 

  52. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.

    CAS  PubMed  Article  Google Scholar 

  53. Gubernator J. Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opinion Drug Deliv. 2011;8(5):565–80.

    CAS  Article  Google Scholar 

  54. Akbarzadeh A et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. Abraham SA et al. The liposomal formulation of doxorubicin. Methods Enzymol. 2005;391:71–97.

    CAS  PubMed  Article  Google Scholar 

  56. Slingerland M, Guchelaar HJ, Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today. 2012;17(3–4):160–6.

    CAS  PubMed  Article  Google Scholar 

  57. Mulder WJM et al. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed. 2006;19(1):142–64.

    CAS  PubMed  Article  Google Scholar 

  58. van den Hoven JM et al. Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol Pharm. 2011;8(4):1002–15.

    PubMed  Article  CAS  Google Scholar 

  59. Zimmerman, S.C, and Lawless L.J. Supramolecular chemistry of dendrimers. In Dendrimers IV. 2001, Springer. 95–120.

  60. Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev. 2005;57(15):2177–202.

    PubMed  Article  CAS  Google Scholar 

  61. Gillies ER, Fréchet JMJ. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 2005;10(1):35–43.

    CAS  PubMed  Article  Google Scholar 

  62. Patil ML et al. Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery. Bioconjug Chem. 2008;19(7):1396–403.

    CAS  PubMed  Article  Google Scholar 

  63. Lee CC et al. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23(12):1517–26.

    CAS  PubMed  Article  Google Scholar 

  64. Li, Y., et al. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat Commun, 2014. 5.

  65. Miller TM et al. Synthesis and characterization of a series of monodisperse, 1,3,5-phenylene-based hydrocarbon dendrimers including C276H186 and their fluorinated analogs. J Am Chem Soc. 1992;114(3):1018–25.

    CAS  Article  Google Scholar 

  66. Tyssen D et al. Structure activity relationship of dendrimer microbicides with dual action antiviral activity. PLoS ONE. 2010;5(8):e12309.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. Patri AK, Kukowska-Latallo JF, Baker Jr JR. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev. 2005;57(15):2203–14.

    CAS  PubMed  Article  Google Scholar 

  68. Svenson S. Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm. 2009;71(3):445–62.

    CAS  PubMed  Article  Google Scholar 

  69. Midoux P et al. Polymer-based gene delivery: a current review on the uptake and intracellular trafficking of polyplexes. Curr Gene Ther. 2008;8(5):335–52.

    CAS  PubMed  Article  Google Scholar 

  70. Gajbhiye V et al. Dendrimers as therapeutic agents: a systematic review. J Pharm Pharmacol. 2009;61(8):989–1003.

    CAS  PubMed  Article  Google Scholar 

  71. Joshi N, Grinstaff M. Applications of dendrimers in tissue engineering. Curr Top Med Chem. 2008;8(14):1225–36.

    PubMed  Article  Google Scholar 

  72. Napoli A et al. Oxidation-responsive polymeric vesicles. Nat Mater. 2004;3(3):183–9.

    CAS  PubMed  Article  Google Scholar 

  73. Poole KM et al. ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease. Biomaterials. 2015;41:166–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Joshi RV et al. Dual pH- and temperature-responsive microparticles for protein delivery to ischemic tissues. Acta Biomater. 2013;9(5):6526–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Schubert S, Delaney Jr JT, Schubert US. Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly (lactic acid). Soft Matter. 2011;7(5):1581–8.

    CAS  Article  Google Scholar 

  76. Hornig S et al. Synthetic polymeric nanoparticles by nanoprecipitation. J Mater Chem. 2009;19(23):3838–40.

    CAS  Article  Google Scholar 

  77. Tseng CHT et al. Continuous precipitation of ceria nanoparticles from a continuous flow micromixer. Int J Adv Manuf Technol. 2013;64(1–4):579–86.

    Article  Google Scholar 

  78. Zhu Z. Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure. Mol Pharm. 2014;11(3):776–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Bensaid S et al. Flow field simulation and mixing efficiency assessment of the multi-inlet vortex mixer for molybdenum sulfide nanoparticle precipitation. Chem Eng J. 2014;238:66–77.

    CAS  Article  Google Scholar 

  80. Fang RH et al. Large-scale synthesis of lipid–polymer hybrid nanoparticles using a multi-inlet vortex reactor. Langmuir. 2012;28(39):13824–9.

    CAS  PubMed  Article  Google Scholar 

  81. Capretto L et al. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv Drug Deliv Rev. 2013;65(11):1496–532.

    CAS  PubMed  Article  Google Scholar 

  82. Adolph EJ et al. Enhanced performance of plasmid DNA polyplexes stabilized by a combination of core hydrophobicity and surface pegylation. J Mater Chem B Mater Biol Med. 2014;2(46):8154–64.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297–315.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Haag R, Kratz F. Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl. 2006;45(8):1198–215.

    CAS  PubMed  Article  Google Scholar 

  85. Rothenfluh DA et al. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat Mater. 2008;7(3):248–54.

    CAS  PubMed  Article  Google Scholar 

  86. Hayder M et al. A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Sci Transl Med. 2011;3(81):81ra35.

    PubMed  Article  CAS  Google Scholar 

  87. Singer II et al. VDIPEN, a metalloproteinase-generated neoepitope, is induced and immunolocalized in articular cartilage during inflammatory arthritis. J Clin Invest. 1995;95(5):2178–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Crielaard BJ et al. Glucocorticoid-loaded core-cross-linked polymeric micelles with tailorable release kinetics for targeted therapy of rheumatoid arthritis. Angew Chem Int Ed. 2012;51(29):7254–8.

    CAS  Article  Google Scholar 

  89. Zhang J et al. Local delivery of indomethacin to arthritis-bearing rats through polymeric micelles based on amphiphilic polyphosphazenes. Pharm Res. 2007;24(10):1944–53.

    CAS  PubMed  Article  Google Scholar 

  90. Koo O, Rubinstein I, Önyüksel H. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharm Res. 2011;28(4):776–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Coimbra M et al. Antitumor efficacy of dexamethasone-loaded core-crosslinked polymeric micelles. J Control Release. 2012;163(3):361–7.

    CAS  PubMed  Article  Google Scholar 

  92. Wilson DR et al. Synthesis and evaluation of cyclosporine a-loaded polysialic acid–polycaprolactone micelles for rheumatoid arthritis. Eur J Pharm Sci. 2014;51:146–56.

    CAS  PubMed  Article  Google Scholar 

  93. Dagar S et al. VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies. J Control Release. 2003;91(1–2):123–33.

    CAS  PubMed  Article  Google Scholar 

  94. Sethi V et al. Novel, biocompatible, and disease modifying VIP nanomedicine for rheumatoid arthritis. Mol Pharm. 2013;10(2):728–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm. 2007;65(3):259–69.

    CAS  PubMed  Article  Google Scholar 

  96. Butoescu N et al. Dexamethasone-containing biodegradable superparamagnetic microparticles for intra-articular administration: physicochemical and magnetic properties, in vitro and in vivo drug release. Eur J Pharm Biopharm. 2009;72(3):529–38.

    CAS  PubMed  Article  Google Scholar 

  97. Pradal J, Jordan O, Allémann E. Intra-articular drug delivery for arthritis diseases: the value of extended release and targeting strategies. J Drug Del Sci Technol. 2012;22(5):409–19.

    CAS  Article  Google Scholar 

  98. van den Hoven JM et al. Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol Pharm. 2011;8(4):1002–15.

    PubMed  Article  CAS  Google Scholar 

  99. Elron-Gross I, Glucksam Y, Margalit R. Liposomal dexamethasone–diclofenac combinations for local osteoarthritis treatment. Int J Pharm. 2009;376(1–2):84–91.

    CAS  PubMed  Article  Google Scholar 

  100. Cho H et al. Theranostic immunoliposomes for osteoarthritis. Nanomedicine. 2014;10(3):619–27.

    CAS  PubMed  Article  Google Scholar 

  101. Cho, H., et al. Detection of early cartilage damage using targeted nanosomes in a post-traumatic osteoarthritis mouse model. Nanomed: Nanotechnol Biol Med, 2015.

  102. Hofkens W et al. Liposomal targeting of prednisolone phosphate to synovial lining macrophages during experimental arthritis inhibits M1 activation but does not favor M2 differentiation. PLoS ONE. 2013;8(2):e54016.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. Dong J et al. Intra-articular delivery of liposomal celecoxib–hyaluronate combination for the treatment of osteoarthritis in rabbit model. Int J Pharm. 2013;441(1):285–90.

    CAS  PubMed  Article  Google Scholar 

  104. Vanniasinghe AS et al. Targeting fibroblast-like synovial cells at sites of inflammation with peptide targeted liposomes results in inhibition of experimental arthritis. Clin Immunol. 2014;151(1):43–54.

    CAS  PubMed  Article  Google Scholar 

  105. Hayder M et al. Anti-inflammatory properties of dendrimers per se. ScientificWorldJournal. 2011;11:1367–82.

    CAS  PubMed  Article  Google Scholar 

  106. Singh A et al. Nanoengineered particles for enhanced intra-articular retention and delivery of proteins. Adv Healthcare Mater. 2014;3(10):1562–7.

    CAS  Article  Google Scholar 

  107. Grund S, Bauer M, Fischer D. Polymers in drug delivery—state of the art and future trends. Adv Eng Mater. 2011;13(3):B61–87.

    Article  CAS  Google Scholar 

  108. Kawadkar J, Chauhan MK. Intra-articular delivery of genipin cross-linked chitosan microspheres of flurbiprofen: Preparation, characterization, in vitro and in vivo studies. Eur J Pharm Biopharm. 2012;81(3):563–72.

    CAS  PubMed  Article  Google Scholar 

  109. Ryan SM et al. An intra-articular salmon calcitonin-based nanocomplex reduces experimental inflammatory arthritis. J Control Release. 2013;167(2):120–9.

    CAS  PubMed  Article  Google Scholar 

  110. Lu Y et al. Preparation and evaluation of biodegradable flubiprofen gelatin micro-spheres for intra-articular administration. J Microencapsul. 2007;24(6):515–24.

    CAS  PubMed  Article  Google Scholar 

  111. Janssen M et al. Drugs and polymers for delivery systems in oa joints: clinical needs and opportunities. Polymers. 2014;6(3):799–819.

    Article  CAS  Google Scholar 

  112. Kumar A et al. Sustained efficacy of intra-articular FX006 in a rat model of osteoarthritis. Osteoarthr Cartil. 2012;20:S289.

    Article  Google Scholar 

  113. Whitmire RE et al. Self-assembling nanoparticles for intra-articular delivery of anti-inflammatory proteins. Biomaterials. 2012;33(30):7665–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Safinya CR, Ewert KK. Materials chemistry: liposomes derived from molecular vases. Nature. 2012;489(7416):372–4.

    CAS  PubMed  Article  Google Scholar 

  115. Morachis JM, Mahmoud EA, Almutairi A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol Rev. 2012;64(3):505–19.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. Liggins R et al. Intra-articular treatment of arthritis with microsphere formulations of paclitaxel: biocompatibility and efficacy determinations in rabbits. Inflamm Res. 2004;53(8):363–72.

    CAS  PubMed  Article  Google Scholar 

  117. Liang LS et al. Methotrexate loaded poly (l-lactic acid) microspheres for intra-articular delivery of methotrexate to the joint. J Pharm Sci. 2004;93(4):943–56.

    CAS  PubMed  Article  Google Scholar 

  118. Bédouet L et al. Synthesis of hydrophilic intra-articular microspheres conjugated to ibuprofen and evaluation of anti-inflammatory activity on articular explants. Int J Pharm. 2014;459(1–2):51–61.

    PubMed  Article  CAS  Google Scholar 

  119. Gaignaux A et al. Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. Int J Pharm. 2012;437(1):20–8.

    CAS  PubMed  Article  Google Scholar 

  120. Zhang Z et al. Enhanced targeting efficiency of PLGA microspheres loaded with Lornoxicam for intra-articular administration. Drug Deliv. 2011;18(7):536–44.

    CAS  PubMed  Article  Google Scholar 

  121. Zhang Z, Huang G. Intra-articular lornoxicam loaded PLGA microspheres: enhanced therapeutic efficiency and decreased systemic toxicity in the treatment of osteoarthritis. Drug Deliv. 2012;19(5):255–63.

    CAS  PubMed  Article  Google Scholar 

  122. Bozdag S et al. In vitro evaluation and intra-articular administration of biodegradable microspheres containing naproxen sodium. J Microencapsul. 2001;18(4):443–56.

    CAS  PubMed  Article  Google Scholar 

  123. Fernandez-Carballido A et al. Sterilized ibuprofen-loaded poly (D, L-lactide-co-glycolide) microspheres for intra-articular administration: effect of γ-irradiation and storage. J Microencapsul. 2004;21(6):653–65.

    CAS  PubMed  Article  Google Scholar 

  124. Panusa A et al. Methylprednisolone loaded PLGA microspheres: a new formulation for sustained release via intra articular administration. A comparison study with methylprednisolone acetate in rats. J Pharma Sci. 2011;100(11):4580–6.

    CAS  Article  Google Scholar 

  125. Horisawa E et al. Prolonged anti-inflammatory action of DL-lactide/glycolide copolymer nanospheres containing betamethasone sodium phosphate for an intra-articular delivery system in antigen-induced arthritic rabbit. Pharm Res. 2002;19(4):403–10.

    CAS  PubMed  Article  Google Scholar 

  126. Zille H et al. Evaluation of intra-articular delivery of hyaluronic acid functionalized biopolymeric nanoparticles in healthy rat knees. Bio-med Mat Eng. 2010;20(3):235–42.

    Google Scholar 

  127. Eswaramoorthy R et al. Sustained release of PTH(1–34) from PLGA microspheres suppresses osteoarthritis progression in rats. Acta Biomater. 2012;8(6):2254–62.

    CAS  PubMed  Article  Google Scholar 

  128. Ko J-Y et al. Sulforaphane–PLGA microspheres for the intra-articular treatment of osteoarthritis. Biomaterials. 2013;34(21):5359–68.

    CAS  PubMed  Article  Google Scholar 

  129. Presumey J et al. PLGA microspheres encapsulating siRNA anti-TNFalpha: efficient RNAi-mediated treatment of arthritic joints. Eur J Pharm Biopharm. 2012;82(3):457–64.

    CAS  PubMed  Article  Google Scholar 

Download references

Conflict of interest

There are no conflicts of interests for the production of this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig L. Duvall.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kavanaugh, T.E., Werfel, T.A., Cho, H. et al. Particle-based technologies for osteoarthritis detection and therapy. Drug Deliv. and Transl. Res. 6, 132–147 (2016). https://doi.org/10.1007/s13346-015-0234-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-015-0234-2

Keywords

  • Osteoarthritis
  • Drug delivery
  • Controlled release
  • Drug targeting