Loeser RF. Osteoarthritis year in review 2013: biology. Osteoarthr Cartil. 2013;21(10):1436–42.
CAS
PubMed
PubMed Central
Article
Google Scholar
Valdes AM, Spector TD. Genetic epidemiology of hip and knee osteoarthritis. Nat Rev Rheumatol. 2011;7(1):23–32.
PubMed
Article
Google Scholar
Issa S, Sharma L. Epidemiology of osteoarthritis: an update. Curr Rheumatol Rep. 2006;8(1):7–15.
PubMed
Article
Google Scholar
Richette P et al. Benefits of massive weight loss on symptoms, systemic inflammation and cartilage turnover in obese patients with knee osteoarthritis. Ann Rheum Dis. 2011;70(1):139–44.
CAS
PubMed
Article
Google Scholar
Tanamas S et al. Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arth Care Res. 2009;61(4):459–67.
Article
Google Scholar
Buckwalter JA, Brown TD. Joint injury, repair, and remodeling: roles in post-traumatic osteoarthritis. Clin Orthop Relat Res. 2004;423:7–16.
PubMed
Article
Google Scholar
Lee AS et al. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene. 2013;527(2):440–7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med. 2010;26(3):355–69.
PubMed
PubMed Central
Article
Google Scholar
Turkiewicz A et al. Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032. Osteoarthr Cartil. 2014;22(11):1826–32.
CAS
PubMed
Article
Google Scholar
Kotlarz H et al. Insurer and out-of-pocket costs of osteoarthritis in the US: evidence from national survey data. Arth Rheuma. 2009;60(12):3546–53.
Article
Google Scholar
Conaghan, P.G., et al. Impact and therapy of osteoarthritis: the Arthritis Care OA Nation 2012 survey. Clin Rheumatol, 2014.
Fortin PR et al. Timing of total joint replacement affects clinical outcomes among patients with osteoarthritis of the hip or knee. Arth Rheuma. 2002;46(12):3327–30.
Article
Google Scholar
Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377(9783):2115–26.
PubMed
Article
Google Scholar
Bradley JD et al. Comparison of an antiinflammatory dose of ibuprofen, an analgesic dose of ibuprofen, and acetaminophen in the treatment of patients with osteoarthritis of the knee. N Engl J Med. 1991;325(2):87–91.
CAS
PubMed
Article
Google Scholar
Kirwan JR. The effect of glucocorticoids on joint destruction in rheumatoid arthritis. The arthritis and rheumatism council low-dose glucocorticoid study group. N Engl J Med. 1995;333(3):142–6.
CAS
PubMed
Article
Google Scholar
Kirwan JR, Rankin E. 8 Intra-articular therapy in osteoarthritis. Baillière’s Clin Rheumatol. 1997;11(4):769–94.
CAS
Article
Google Scholar
Derendorf H et al. Pharmacokinetics and pharmacodynamics of glucocorticoid suspensions after intra-articular administration. Clin Pharm Ther. 1986;39(3):313–7.
CAS
Article
Google Scholar
Gerwin N, Hops C, Lucke A. Intraarticular drug delivery in osteoarthritis. Adv Drug Deliv Rev. 2006;58(2):226–42.
CAS
PubMed
Article
Google Scholar
Larsen C et al. Intra-articular depot formulation principles: role in the management of postoperative pain and arthritic disorders. J Pharm Sci. 2008;97(11):4622–54.
CAS
PubMed
Article
Google Scholar
Nanomaterials for the local and targeted delivery of osteoarthritis drugs. J Nanomater, 2012. 2012: 13.
Bertrand N et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.
CAS
PubMed
PubMed Central
Article
Google Scholar
Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2(5):347–60.
CAS
PubMed
Article
Google Scholar
Peppas NA et al. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18(11):1345–60.
CAS
Article
Google Scholar
Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47(1):113–31.
CAS
PubMed
Article
Google Scholar
Maibaum L, Dinner AR, Chandler D. Micelle formation and the hydrophobic effect†. J Phys Chem B. 2004;108(21):6778–81.
CAS
Article
Google Scholar
Eetezadi, S., S.N. Ekdawi, and C. Allen, The challenges facing block copolymer micelles for cancer therapy: In vivo barriers and clinical translation. Adv Drug Deliv Rev, 2014.
O’Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem Soc Rev. 2006;35(11):1068–83.
PubMed
Article
CAS
Google Scholar
Oe Y et al. Actively-targeted polyion complex micelles stabilized by cholesterol and disulfide cross-linking for systemic delivery of siRNA to solid tumors. Biomaterials. 2014;35(27):7887–95.
CAS
PubMed
Article
Google Scholar
Kazunori K et al. Block copolymer micelles as vehicles for drug delivery. J Control Release. 1993;24(1–3):119–32.
Article
Google Scholar
Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–9.
CAS
PubMed
Article
Google Scholar
Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014;13(11):813–27.
CAS
PubMed
PubMed Central
Article
Google Scholar
Oerlemans C et al. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res. 2010;27(12):2569–89.
CAS
PubMed
PubMed Central
Article
Google Scholar
Choi HS et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25(10):1165–70.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yamamoto Y et al. Long-circulating poly(ethylene glycol)-poly(D, L-lactide) block copolymer micelles with modulated surface charge. J Control Release. 2001;77(1–2):27–38.
CAS
PubMed
Article
Google Scholar
Papahadjopoulos D et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A. 1991;88(24):11460–4.
CAS
PubMed
PubMed Central
Article
Google Scholar
Gao W et al. In situ growth of a stoichiometric PEG-like conjugate at a protein’s N-terminus with significantly improved pharmacokinetics. Proc Natl Acad Sci U S A. 2009;106(36):15231–6.
CAS
PubMed
PubMed Central
Article
Google Scholar
Li H et al. Matrix metalloproteinase responsive, proximity-activated polymeric nanoparticles for siRNA delivery. Adv Funct Mater. 2013;23(24):3040–52.
CAS
PubMed
PubMed Central
Article
Google Scholar
Gupta MK et al. Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. J Control Release. 2012;162(3):591–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Li H et al. Dual MMP7-proximity-activated and folate receptor-targeted nanoparticles for siRNA delivery. Biomacromolecules. 2014;16(1):192–201.
PubMed
PubMed Central
Article
CAS
Google Scholar
Ponta A, Bae Y. PEG-poly (amino acid) block copolymer micelles for tunable drug release. Pharm Res. 2010;27(11):2330–42.
CAS
PubMed
Article
Google Scholar
Wu C et al. Fabrication of complex micelles with tunable shell for application in controlled drug release. Macromol Biosci. 2009;9(12):1185–93.
CAS
PubMed
Article
Google Scholar
Li J et al. A reduction and pH dual-sensitive polymeric vector for long-circulating and tumor-targeted siRNA delivery. Adv Mater. 2014;26(48):8217–24.
CAS
PubMed
Article
Google Scholar
Dahlman JE et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat Nano. 2014;9(8):648–55.
CAS
Article
Google Scholar
Convertine AJ et al. Development of a novel endosomolytic diblock copolymer for siRNA delivery. J Control Release. 2009;133(3):221–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Convertine AJ et al. pH-responsive polymeric micelle carriers for siRNA drugs. Biomacromolecules. 2010;11(11):2904–11.
CAS
PubMed
PubMed Central
Article
Google Scholar
Nelson CE et al. Balancing cationic and hydrophobic content of PEGylated siRNA polyplexes enhances endosome escape, stability, blood circulation time, and bioactivity in vivo. ACS Nano. 2013;7(10):8870–80.
CAS
PubMed
Article
Google Scholar
Miteva M et al. Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers. Biomaterials. 2015;38:97–107.
CAS
PubMed
Article
Google Scholar
Pittella F et al. Enhanced endosomal escape of siRNA-incorporating hybrid nanoparticles from calcium phosphate and PEG-block charge-conversional polymer for efficient gene knockdown with negligible cytotoxicity. Biomaterials. 2011;32(11):3106–14.
CAS
PubMed
Article
Google Scholar
PANYAM J et al. Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002;16(10):1217–26.
CAS
PubMed
Article
Google Scholar
Allen TM, Chonn A. Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett. 1987;223(1):42–6.
CAS
PubMed
Article
Google Scholar
Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48.
CAS
PubMed
Article
Google Scholar
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.
CAS
PubMed
Article
Google Scholar
Gubernator J. Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opinion Drug Deliv. 2011;8(5):565–80.
CAS
Article
Google Scholar
Akbarzadeh A et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.
PubMed
PubMed Central
Article
CAS
Google Scholar
Abraham SA et al. The liposomal formulation of doxorubicin. Methods Enzymol. 2005;391:71–97.
CAS
PubMed
Article
Google Scholar
Slingerland M, Guchelaar HJ, Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today. 2012;17(3–4):160–6.
CAS
PubMed
Article
Google Scholar
Mulder WJM et al. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed. 2006;19(1):142–64.
CAS
PubMed
Article
Google Scholar
van den Hoven JM et al. Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol Pharm. 2011;8(4):1002–15.
PubMed
Article
CAS
Google Scholar
Zimmerman, S.C, and Lawless L.J. Supramolecular chemistry of dendrimers. In Dendrimers IV. 2001, Springer. 95–120.
Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev. 2005;57(15):2177–202.
PubMed
Article
CAS
Google Scholar
Gillies ER, Fréchet JMJ. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 2005;10(1):35–43.
CAS
PubMed
Article
Google Scholar
Patil ML et al. Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery. Bioconjug Chem. 2008;19(7):1396–403.
CAS
PubMed
Article
Google Scholar
Lee CC et al. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23(12):1517–26.
CAS
PubMed
Article
Google Scholar
Li, Y., et al. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat Commun, 2014. 5.
Miller TM et al. Synthesis and characterization of a series of monodisperse, 1,3,5-phenylene-based hydrocarbon dendrimers including C276H186 and their fluorinated analogs. J Am Chem Soc. 1992;114(3):1018–25.
CAS
Article
Google Scholar
Tyssen D et al. Structure activity relationship of dendrimer microbicides with dual action antiviral activity. PLoS ONE. 2010;5(8):e12309.
PubMed
PubMed Central
Article
CAS
Google Scholar
Patri AK, Kukowska-Latallo JF, Baker Jr JR. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev. 2005;57(15):2203–14.
CAS
PubMed
Article
Google Scholar
Svenson S. Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm. 2009;71(3):445–62.
CAS
PubMed
Article
Google Scholar
Midoux P et al. Polymer-based gene delivery: a current review on the uptake and intracellular trafficking of polyplexes. Curr Gene Ther. 2008;8(5):335–52.
CAS
PubMed
Article
Google Scholar
Gajbhiye V et al. Dendrimers as therapeutic agents: a systematic review. J Pharm Pharmacol. 2009;61(8):989–1003.
CAS
PubMed
Article
Google Scholar
Joshi N, Grinstaff M. Applications of dendrimers in tissue engineering. Curr Top Med Chem. 2008;8(14):1225–36.
PubMed
Article
Google Scholar
Napoli A et al. Oxidation-responsive polymeric vesicles. Nat Mater. 2004;3(3):183–9.
CAS
PubMed
Article
Google Scholar
Poole KM et al. ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease. Biomaterials. 2015;41:166–75.
CAS
PubMed
PubMed Central
Article
Google Scholar
Joshi RV et al. Dual pH- and temperature-responsive microparticles for protein delivery to ischemic tissues. Acta Biomater. 2013;9(5):6526–34.
CAS
PubMed
PubMed Central
Article
Google Scholar
Schubert S, Delaney Jr JT, Schubert US. Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly (lactic acid). Soft Matter. 2011;7(5):1581–8.
CAS
Article
Google Scholar
Hornig S et al. Synthetic polymeric nanoparticles by nanoprecipitation. J Mater Chem. 2009;19(23):3838–40.
CAS
Article
Google Scholar
Tseng CHT et al. Continuous precipitation of ceria nanoparticles from a continuous flow micromixer. Int J Adv Manuf Technol. 2013;64(1–4):579–86.
Article
Google Scholar
Zhu Z. Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure. Mol Pharm. 2014;11(3):776–86.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bensaid S et al. Flow field simulation and mixing efficiency assessment of the multi-inlet vortex mixer for molybdenum sulfide nanoparticle precipitation. Chem Eng J. 2014;238:66–77.
CAS
Article
Google Scholar
Fang RH et al. Large-scale synthesis of lipid–polymer hybrid nanoparticles using a multi-inlet vortex reactor. Langmuir. 2012;28(39):13824–9.
CAS
PubMed
Article
Google Scholar
Capretto L et al. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv Drug Deliv Rev. 2013;65(11):1496–532.
CAS
PubMed
Article
Google Scholar
Adolph EJ et al. Enhanced performance of plasmid DNA polyplexes stabilized by a combination of core hydrophobicity and surface pegylation. J Mater Chem B Mater Biol Med. 2014;2(46):8154–64.
CAS
PubMed
PubMed Central
Article
Google Scholar
Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297–315.
CAS
PubMed
PubMed Central
Article
Google Scholar
Haag R, Kratz F. Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl. 2006;45(8):1198–215.
CAS
PubMed
Article
Google Scholar
Rothenfluh DA et al. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat Mater. 2008;7(3):248–54.
CAS
PubMed
Article
Google Scholar
Hayder M et al. A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Sci Transl Med. 2011;3(81):81ra35.
PubMed
Article
CAS
Google Scholar
Singer II et al. VDIPEN, a metalloproteinase-generated neoepitope, is induced and immunolocalized in articular cartilage during inflammatory arthritis. J Clin Invest. 1995;95(5):2178–86.
CAS
PubMed
PubMed Central
Article
Google Scholar
Crielaard BJ et al. Glucocorticoid-loaded core-cross-linked polymeric micelles with tailorable release kinetics for targeted therapy of rheumatoid arthritis. Angew Chem Int Ed. 2012;51(29):7254–8.
CAS
Article
Google Scholar
Zhang J et al. Local delivery of indomethacin to arthritis-bearing rats through polymeric micelles based on amphiphilic polyphosphazenes. Pharm Res. 2007;24(10):1944–53.
CAS
PubMed
Article
Google Scholar
Koo O, Rubinstein I, Önyüksel H. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharm Res. 2011;28(4):776–87.
CAS
PubMed
PubMed Central
Article
Google Scholar
Coimbra M et al. Antitumor efficacy of dexamethasone-loaded core-crosslinked polymeric micelles. J Control Release. 2012;163(3):361–7.
CAS
PubMed
Article
Google Scholar
Wilson DR et al. Synthesis and evaluation of cyclosporine a-loaded polysialic acid–polycaprolactone micelles for rheumatoid arthritis. Eur J Pharm Sci. 2014;51:146–56.
CAS
PubMed
Article
Google Scholar
Dagar S et al. VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies. J Control Release. 2003;91(1–2):123–33.
CAS
PubMed
Article
Google Scholar
Sethi V et al. Novel, biocompatible, and disease modifying VIP nanomedicine for rheumatoid arthritis. Mol Pharm. 2013;10(2):728–38.
CAS
PubMed
PubMed Central
Article
Google Scholar
Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm. 2007;65(3):259–69.
CAS
PubMed
Article
Google Scholar
Butoescu N et al. Dexamethasone-containing biodegradable superparamagnetic microparticles for intra-articular administration: physicochemical and magnetic properties, in vitro and in vivo drug release. Eur J Pharm Biopharm. 2009;72(3):529–38.
CAS
PubMed
Article
Google Scholar
Pradal J, Jordan O, Allémann E. Intra-articular drug delivery for arthritis diseases: the value of extended release and targeting strategies. J Drug Del Sci Technol. 2012;22(5):409–19.
CAS
Article
Google Scholar
van den Hoven JM et al. Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol Pharm. 2011;8(4):1002–15.
PubMed
Article
CAS
Google Scholar
Elron-Gross I, Glucksam Y, Margalit R. Liposomal dexamethasone–diclofenac combinations for local osteoarthritis treatment. Int J Pharm. 2009;376(1–2):84–91.
CAS
PubMed
Article
Google Scholar
Cho H et al. Theranostic immunoliposomes for osteoarthritis. Nanomedicine. 2014;10(3):619–27.
CAS
PubMed
Article
Google Scholar
Cho, H., et al. Detection of early cartilage damage using targeted nanosomes in a post-traumatic osteoarthritis mouse model. Nanomed: Nanotechnol Biol Med, 2015.
Hofkens W et al. Liposomal targeting of prednisolone phosphate to synovial lining macrophages during experimental arthritis inhibits M1 activation but does not favor M2 differentiation. PLoS ONE. 2013;8(2):e54016.
CAS
PubMed
PubMed Central
Article
Google Scholar
Dong J et al. Intra-articular delivery of liposomal celecoxib–hyaluronate combination for the treatment of osteoarthritis in rabbit model. Int J Pharm. 2013;441(1):285–90.
CAS
PubMed
Article
Google Scholar
Vanniasinghe AS et al. Targeting fibroblast-like synovial cells at sites of inflammation with peptide targeted liposomes results in inhibition of experimental arthritis. Clin Immunol. 2014;151(1):43–54.
CAS
PubMed
Article
Google Scholar
Hayder M et al. Anti-inflammatory properties of dendrimers per se. ScientificWorldJournal. 2011;11:1367–82.
CAS
PubMed
Article
Google Scholar
Singh A et al. Nanoengineered particles for enhanced intra-articular retention and delivery of proteins. Adv Healthcare Mater. 2014;3(10):1562–7.
CAS
Article
Google Scholar
Grund S, Bauer M, Fischer D. Polymers in drug delivery—state of the art and future trends. Adv Eng Mater. 2011;13(3):B61–87.
Article
CAS
Google Scholar
Kawadkar J, Chauhan MK. Intra-articular delivery of genipin cross-linked chitosan microspheres of flurbiprofen: Preparation, characterization, in vitro and in vivo studies. Eur J Pharm Biopharm. 2012;81(3):563–72.
CAS
PubMed
Article
Google Scholar
Ryan SM et al. An intra-articular salmon calcitonin-based nanocomplex reduces experimental inflammatory arthritis. J Control Release. 2013;167(2):120–9.
CAS
PubMed
Article
Google Scholar
Lu Y et al. Preparation and evaluation of biodegradable flubiprofen gelatin micro-spheres for intra-articular administration. J Microencapsul. 2007;24(6):515–24.
CAS
PubMed
Article
Google Scholar
Janssen M et al. Drugs and polymers for delivery systems in oa joints: clinical needs and opportunities. Polymers. 2014;6(3):799–819.
Article
CAS
Google Scholar
Kumar A et al. Sustained efficacy of intra-articular FX006 in a rat model of osteoarthritis. Osteoarthr Cartil. 2012;20:S289.
Article
Google Scholar
Whitmire RE et al. Self-assembling nanoparticles for intra-articular delivery of anti-inflammatory proteins. Biomaterials. 2012;33(30):7665–75.
CAS
PubMed
PubMed Central
Article
Google Scholar
Safinya CR, Ewert KK. Materials chemistry: liposomes derived from molecular vases. Nature. 2012;489(7416):372–4.
CAS
PubMed
Article
Google Scholar
Morachis JM, Mahmoud EA, Almutairi A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol Rev. 2012;64(3):505–19.
CAS
PubMed
PubMed Central
Article
Google Scholar
Liggins R et al. Intra-articular treatment of arthritis with microsphere formulations of paclitaxel: biocompatibility and efficacy determinations in rabbits. Inflamm Res. 2004;53(8):363–72.
CAS
PubMed
Article
Google Scholar
Liang LS et al. Methotrexate loaded poly (l-lactic acid) microspheres for intra-articular delivery of methotrexate to the joint. J Pharm Sci. 2004;93(4):943–56.
CAS
PubMed
Article
Google Scholar
Bédouet L et al. Synthesis of hydrophilic intra-articular microspheres conjugated to ibuprofen and evaluation of anti-inflammatory activity on articular explants. Int J Pharm. 2014;459(1–2):51–61.
PubMed
Article
CAS
Google Scholar
Gaignaux A et al. Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. Int J Pharm. 2012;437(1):20–8.
CAS
PubMed
Article
Google Scholar
Zhang Z et al. Enhanced targeting efficiency of PLGA microspheres loaded with Lornoxicam for intra-articular administration. Drug Deliv. 2011;18(7):536–44.
CAS
PubMed
Article
Google Scholar
Zhang Z, Huang G. Intra-articular lornoxicam loaded PLGA microspheres: enhanced therapeutic efficiency and decreased systemic toxicity in the treatment of osteoarthritis. Drug Deliv. 2012;19(5):255–63.
CAS
PubMed
Article
Google Scholar
Bozdag S et al. In vitro evaluation and intra-articular administration of biodegradable microspheres containing naproxen sodium. J Microencapsul. 2001;18(4):443–56.
CAS
PubMed
Article
Google Scholar
Fernandez-Carballido A et al. Sterilized ibuprofen-loaded poly (D, L-lactide-co-glycolide) microspheres for intra-articular administration: effect of γ-irradiation and storage. J Microencapsul. 2004;21(6):653–65.
CAS
PubMed
Article
Google Scholar
Panusa A et al. Methylprednisolone loaded PLGA microspheres: a new formulation for sustained release via intra articular administration. A comparison study with methylprednisolone acetate in rats. J Pharma Sci. 2011;100(11):4580–6.
CAS
Article
Google Scholar
Horisawa E et al. Prolonged anti-inflammatory action of DL-lactide/glycolide copolymer nanospheres containing betamethasone sodium phosphate for an intra-articular delivery system in antigen-induced arthritic rabbit. Pharm Res. 2002;19(4):403–10.
CAS
PubMed
Article
Google Scholar
Zille H et al. Evaluation of intra-articular delivery of hyaluronic acid functionalized biopolymeric nanoparticles in healthy rat knees. Bio-med Mat Eng. 2010;20(3):235–42.
Google Scholar
Eswaramoorthy R et al. Sustained release of PTH(1–34) from PLGA microspheres suppresses osteoarthritis progression in rats. Acta Biomater. 2012;8(6):2254–62.
CAS
PubMed
Article
Google Scholar
Ko J-Y et al. Sulforaphane–PLGA microspheres for the intra-articular treatment of osteoarthritis. Biomaterials. 2013;34(21):5359–68.
CAS
PubMed
Article
Google Scholar
Presumey J et al. PLGA microspheres encapsulating siRNA anti-TNFalpha: efficient RNAi-mediated treatment of arthritic joints. Eur J Pharm Biopharm. 2012;82(3):457–64.
CAS
PubMed
Article
Google Scholar