Abstract
Immunodiagnostic microneedles provide a novel way to extract protein biomarkers from the skin in a minimally invasive manner for analysis in vitro. The technology could overcome challenges in biomarker analysis specifically in solid tissue, which currently often involves invasive biopsies. This study describes the development of a multiplex immunodiagnostic device incorporating mechanisms to detect multiple antigens simultaneously, as well as internal assay controls for result validation. A novel detection method is also proposed. It enables signal detection specifically at microneedle tips and therefore may aid the construction of depth profiles of skin biomarkers. The detection method can be coupled with computerised densitometry for signal quantitation. The antigen specificity, sensitivity and functional stability of the device were assessed against a number of model biomarkers. Detection and analysis of endogenous antigens (interleukins 1α and 6) from the skin using the device was demonstrated. The results were verified using conventional enzyme-linked immunosorbent assays. The detection limit of the microneedle device, at ≤10 pg/mL, was at least comparable to conventional plate-based solid-phase enzyme immunoassays.
This is a preview of subscription content, access via your institution.









References
Gremel G, Grannas K, Sutton LA, Pontén F, Zieba A. In situ protein detection for companion diagnostics. Front Oncol. 2013;3:271. doi:10.3389/fonc.2013.00271.
Fuertes L, Santonja C, Kutzner H, Requena L. Immunohistochemistry in dermatopathology: a review of the most commonly used antibodies (part I). Actas Dermosifiliogr. 2013;104:99–127.
Fuertes L, Santonja C, Kutzner H, Requena L. Immunohistochemistry in dermatopathology: a review of the most commonly used antibodies (part II). Actas Dermosifiliogr. 2013;104:181–203.
Ericsson C, Nistér M. Protein extraction from solid tissue. Methods Mol Biol Clifton NJ. 2011;675:307–12. doi:10.1007/978-1-59745-423-0_17.
Skehel JM. Preparation of extracts from animal tissues. In: Cutler P, editor. Protein purification protocols. 2nd ed. Totowa: Humana Press; 2004. p. 15–20.
Kim Y-C, Park J-H, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64:1547–68. doi:10.1016/j.addr.2012.04.005.
Tuan-Mahmood T-M, McCrudden MTC, Torrisi BM, McAlister E, Garland MJ, Singh TRR, et al. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci. 2013;50:623–37. doi:10.1016/j.ejps.2013.05.005.
Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of microneedle design on pain in human volunteers. Clin J Pain. 2008;24:585–94. doi:10.1097/AJP.0b013e31816778f9.
Haq MI, Smith E, John DN, Kalavala M, Edwards C, Anstey A, et al. Clinical administration of microneedles: skin puncture, pain and sensation. Biomed Microdevices. 2009;11:35–47. doi:10.1007/s10544-008-9208-1.
Bhargav A, Muller DA, Kendall MAF, Corrie SR. Surface modifications of microprojection arrays for improved biomarker capture in the skin of live mice. ACS Appl Mater Interfaces. 2012;4:2483–9. doi:10.1021/am3001727.
Coffey JW, Corrie SR, Kendall MAF. Early circulating biomarker detection using a wearable microprojection array skin patch. Biomaterials. 2013;34:9572–83. doi:10.1016/j.biomaterials.2013.08.078.
Lee KT, Muller DA, Coffey JW, Robinson KJ, McCarthy JS, Kendall MAF, et al. Capture of the circulating plasmodium falciparum biomarker HRP2 in a multiplexed format, via a wearable skin patch. Anal Chem. 2014;86:10474–83. doi:10.1021/ac5031682.
Yeow B, Coffey JW, Muller DA, Grøndahl L, Kendall MAF, Corrie SR. Surface modification and characterization of polycarbonate microdevices for capture of circulating biomarkers, both in vitro and in vivo. Anal Chem. 2013;85:10196–204. doi:10.1021/ac402942x.
Muller DA, Corrie SR, Coffey J, Young PR, Kendall MA. Surface modified microprojection arrays for the selective extraction of the dengue virus NS1 protein as a marker for disease. Anal Chem. 2012;84:3262–8. doi:10.1021/ac2034387.
Corrie SR, Fernando GJP, Crichton ML, Brunck MEG, Anderson CD, Kendall MAF. Surface-modified microprojection arrays for intradermal biomarker capture, with low non-specific protein binding. Lab Chip. 2010;10:2655. doi:10.1039/c0lc00068j.
Strambini LM, Longo A, Diligenti A, Barillaro G. A minimally invasive microchip for transdermal injection/sampling applications. Lab Chip. 2012;12:3370. doi:10.1039/c2lc40348j.
Li CG, Lee CY, Lee K, Jung H. An optimized hollow microneedle for minimally invasive blood extraction. Biomed Microdevices. 2013;15:17–25. doi:10.1007/s10544-012-9683-2.
Strambini LM, Longo A, Scarano S, Prescimone T, Palchetti I, Minunni M, et al. Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid. Biosens Bioelectron. 2015;66:162–8. doi:10.1016/j.bios.2014.11.010.
Romanyuk AV, Zvezdin VN, Samant P, Grenader MI, Zemlyanova M, Prausnitz MR. Collection of analytes from microneedle patches. Anal Chem. 2014;86:10520–3. doi:10.1021/ac503823p.
Donnelly RF, Mooney K, Caffarel-Salvador E, Torrisi BM, Eltayib E, McElnay JC. Microneedle-mediated minimally invasive patient monitoring. Ther Drug Monit. 2014;36:10–7. doi:10.1097/FTD.0000000000000022.
McAllister DV, Wang PM, Davis SP, Park J-H, Canatella PJ, Allen MG, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci U S A. 2003;100:13755–60. doi:10.1073/pnas.2331316100.
Zhu Y, Gao C, Liu X, Shen J. Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules. 2002;3:1312–9.
Cai N, Gong Y, Chian KS, Chan V, Liao K. Adhesion dynamics of porcine esophageal fibroblasts on extracellular matrix protein-functionalized poly(lactic acid). Biomed Mater. 2008;3:015014. doi:10.1088/1748-6041/3/1/015014.
Ansari AA, Hattikudur NS, Joshi SR, Medeira MA. ELISA solid phase: stability and binding characteristics. J Immunol Methods. 1985;84:117–24. doi:10.1016/0022-1759(85)90420-X.
Schramm W, Yang T, Midgley AR. Monoclonal antibodies used in solid-phase and liquid-phase assays, as exemplified by progesterone assay. Clin Chem. 1987;33:1331–7.
Lakowicz JR. Principles of fluorescence spectroscopy. Boston: Springer US; 2006. p. 277–330.
Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. Nat Methods. 2005;2:905–9. doi:10.1038/nmeth819.
Bal SM, Caussin J, Pavel S, Bouwstra JA. In vivo assessment of safety of microneedle arrays in human skin. Eur J Pharm Sci. 2008;35:193–202. doi:10.1016/j.ejps.2008.06.016.
Del Pilar Martin M, Weldon WC, Zarnitsyn VG, Koutsonanos DG, Akbari H, Skountzou I, et al. Local response to microneedle-based influenza immunization in the skin. mBio. 2012;3:e00012–12. doi:10.1128/mBio.00012-12.
Acknowledgments
The authors thank the staff at the Centre for Advanced Microscopy (University of Reading) for their help with SEM experiments, and staff at the Bioresource Unit (University of Brighton) for donating cadaver mouse skin samples.
Conflict of interest
KWN, WML and ACW declare that they have no conflict of interest.
Study ethics
No animal or human studies were carried out by the authors for this article.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ng, K.W., Lau, W.M. & Williams, A.C. Towards pain-free diagnosis of skin diseases through multiplexed microneedles: biomarker extraction and detection using a highly sensitive blotting method. Drug Deliv. and Transl. Res. 5, 387–396 (2015). https://doi.org/10.1007/s13346-015-0231-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13346-015-0231-5
Keywords
- Immunodiagnostic microneedles
- Microprojection arrays
- Biomarkers
- Immobilised antibody
- Densitometry
- Skin diagnosis