Skip to main content

Towards pain-free diagnosis of skin diseases through multiplexed microneedles: biomarker extraction and detection using a highly sensitive blotting method

Abstract

Immunodiagnostic microneedles provide a novel way to extract protein biomarkers from the skin in a minimally invasive manner for analysis in vitro. The technology could overcome challenges in biomarker analysis specifically in solid tissue, which currently often involves invasive biopsies. This study describes the development of a multiplex immunodiagnostic device incorporating mechanisms to detect multiple antigens simultaneously, as well as internal assay controls for result validation. A novel detection method is also proposed. It enables signal detection specifically at microneedle tips and therefore may aid the construction of depth profiles of skin biomarkers. The detection method can be coupled with computerised densitometry for signal quantitation. The antigen specificity, sensitivity and functional stability of the device were assessed against a number of model biomarkers. Detection and analysis of endogenous antigens (interleukins 1α and 6) from the skin using the device was demonstrated. The results were verified using conventional enzyme-linked immunosorbent assays. The detection limit of the microneedle device, at ≤10 pg/mL, was at least comparable to conventional plate-based solid-phase enzyme immunoassays.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Gremel G, Grannas K, Sutton LA, Pontén F, Zieba A. In situ protein detection for companion diagnostics. Front Oncol. 2013;3:271. doi:10.3389/fonc.2013.00271.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fuertes L, Santonja C, Kutzner H, Requena L. Immunohistochemistry in dermatopathology: a review of the most commonly used antibodies (part I). Actas Dermosifiliogr. 2013;104:99–127.

    Article  CAS  PubMed  Google Scholar 

  3. Fuertes L, Santonja C, Kutzner H, Requena L. Immunohistochemistry in dermatopathology: a review of the most commonly used antibodies (part II). Actas Dermosifiliogr. 2013;104:181–203.

    Article  CAS  PubMed  Google Scholar 

  4. Ericsson C, Nistér M. Protein extraction from solid tissue. Methods Mol Biol Clifton NJ. 2011;675:307–12. doi:10.1007/978-1-59745-423-0_17.

    Article  CAS  Google Scholar 

  5. Skehel JM. Preparation of extracts from animal tissues. In: Cutler P, editor. Protein purification protocols. 2nd ed. Totowa: Humana Press; 2004. p. 15–20.

    Google Scholar 

  6. Kim Y-C, Park J-H, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64:1547–68. doi:10.1016/j.addr.2012.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tuan-Mahmood T-M, McCrudden MTC, Torrisi BM, McAlister E, Garland MJ, Singh TRR, et al. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci. 2013;50:623–37. doi:10.1016/j.ejps.2013.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of microneedle design on pain in human volunteers. Clin J Pain. 2008;24:585–94. doi:10.1097/AJP.0b013e31816778f9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Haq MI, Smith E, John DN, Kalavala M, Edwards C, Anstey A, et al. Clinical administration of microneedles: skin puncture, pain and sensation. Biomed Microdevices. 2009;11:35–47. doi:10.1007/s10544-008-9208-1.

    Article  CAS  PubMed  Google Scholar 

  10. Bhargav A, Muller DA, Kendall MAF, Corrie SR. Surface modifications of microprojection arrays for improved biomarker capture in the skin of live mice. ACS Appl Mater Interfaces. 2012;4:2483–9. doi:10.1021/am3001727.

    Article  CAS  PubMed  Google Scholar 

  11. Coffey JW, Corrie SR, Kendall MAF. Early circulating biomarker detection using a wearable microprojection array skin patch. Biomaterials. 2013;34:9572–83. doi:10.1016/j.biomaterials.2013.08.078.

    Article  CAS  PubMed  Google Scholar 

  12. Lee KT, Muller DA, Coffey JW, Robinson KJ, McCarthy JS, Kendall MAF, et al. Capture of the circulating plasmodium falciparum biomarker HRP2 in a multiplexed format, via a wearable skin patch. Anal Chem. 2014;86:10474–83. doi:10.1021/ac5031682.

    Article  CAS  PubMed  Google Scholar 

  13. Yeow B, Coffey JW, Muller DA, Grøndahl L, Kendall MAF, Corrie SR. Surface modification and characterization of polycarbonate microdevices for capture of circulating biomarkers, both in vitro and in vivo. Anal Chem. 2013;85:10196–204. doi:10.1021/ac402942x.

    Article  CAS  PubMed  Google Scholar 

  14. Muller DA, Corrie SR, Coffey J, Young PR, Kendall MA. Surface modified microprojection arrays for the selective extraction of the dengue virus NS1 protein as a marker for disease. Anal Chem. 2012;84:3262–8. doi:10.1021/ac2034387.

    Article  CAS  PubMed  Google Scholar 

  15. Corrie SR, Fernando GJP, Crichton ML, Brunck MEG, Anderson CD, Kendall MAF. Surface-modified microprojection arrays for intradermal biomarker capture, with low non-specific protein binding. Lab Chip. 2010;10:2655. doi:10.1039/c0lc00068j.

    Article  CAS  PubMed  Google Scholar 

  16. Strambini LM, Longo A, Diligenti A, Barillaro G. A minimally invasive microchip for transdermal injection/sampling applications. Lab Chip. 2012;12:3370. doi:10.1039/c2lc40348j.

    Article  CAS  PubMed  Google Scholar 

  17. Li CG, Lee CY, Lee K, Jung H. An optimized hollow microneedle for minimally invasive blood extraction. Biomed Microdevices. 2013;15:17–25. doi:10.1007/s10544-012-9683-2.

    Article  PubMed  Google Scholar 

  18. Strambini LM, Longo A, Scarano S, Prescimone T, Palchetti I, Minunni M, et al. Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid. Biosens Bioelectron. 2015;66:162–8. doi:10.1016/j.bios.2014.11.010.

    Article  CAS  PubMed  Google Scholar 

  19. Romanyuk AV, Zvezdin VN, Samant P, Grenader MI, Zemlyanova M, Prausnitz MR. Collection of analytes from microneedle patches. Anal Chem. 2014;86:10520–3. doi:10.1021/ac503823p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Donnelly RF, Mooney K, Caffarel-Salvador E, Torrisi BM, Eltayib E, McElnay JC. Microneedle-mediated minimally invasive patient monitoring. Ther Drug Monit. 2014;36:10–7. doi:10.1097/FTD.0000000000000022.

    PubMed  Google Scholar 

  21. McAllister DV, Wang PM, Davis SP, Park J-H, Canatella PJ, Allen MG, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci U S A. 2003;100:13755–60. doi:10.1073/pnas.2331316100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu Y, Gao C, Liu X, Shen J. Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules. 2002;3:1312–9.

    Article  CAS  PubMed  Google Scholar 

  23. Cai N, Gong Y, Chian KS, Chan V, Liao K. Adhesion dynamics of porcine esophageal fibroblasts on extracellular matrix protein-functionalized poly(lactic acid). Biomed Mater. 2008;3:015014. doi:10.1088/1748-6041/3/1/015014.

    Article  PubMed  Google Scholar 

  24. Ansari AA, Hattikudur NS, Joshi SR, Medeira MA. ELISA solid phase: stability and binding characteristics. J Immunol Methods. 1985;84:117–24. doi:10.1016/0022-1759(85)90420-X.

    Article  CAS  PubMed  Google Scholar 

  25. Schramm W, Yang T, Midgley AR. Monoclonal antibodies used in solid-phase and liquid-phase assays, as exemplified by progesterone assay. Clin Chem. 1987;33:1331–7.

    CAS  PubMed  Google Scholar 

  26. Lakowicz JR. Principles of fluorescence spectroscopy. Boston: Springer US; 2006. p. 277–330.

    Book  Google Scholar 

  27. Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. Nat Methods. 2005;2:905–9. doi:10.1038/nmeth819.

    Article  CAS  PubMed  Google Scholar 

  28. Bal SM, Caussin J, Pavel S, Bouwstra JA. In vivo assessment of safety of microneedle arrays in human skin. Eur J Pharm Sci. 2008;35:193–202. doi:10.1016/j.ejps.2008.06.016.

    Article  CAS  PubMed  Google Scholar 

  29. Del Pilar Martin M, Weldon WC, Zarnitsyn VG, Koutsonanos DG, Akbari H, Skountzou I, et al. Local response to microneedle-based influenza immunization in the skin. mBio. 2012;3:e00012–12. doi:10.1128/mBio.00012-12.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the staff at the Centre for Advanced Microscopy (University of Reading) for their help with SEM experiments, and staff at the Bioresource Unit (University of Brighton) for donating cadaver mouse skin samples.

Conflict of interest

KWN, WML and ACW declare that they have no conflict of interest.

Study ethics

No animal or human studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keng Wooi Ng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ng, K.W., Lau, W.M. & Williams, A.C. Towards pain-free diagnosis of skin diseases through multiplexed microneedles: biomarker extraction and detection using a highly sensitive blotting method. Drug Deliv. and Transl. Res. 5, 387–396 (2015). https://doi.org/10.1007/s13346-015-0231-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-015-0231-5

Keywords

  • Immunodiagnostic microneedles
  • Microprojection arrays
  • Biomarkers
  • Immobilised antibody
  • Densitometry
  • Skin diagnosis