Influence of cholesterol on liposome stability and on in vitro drug release

Abstract

Cholesterol plays a strategic role in liposome composition; however, the quantity used to achieve an appropriate formulation has not been yet clarified. Therefore, by screening arrangement of lipids and cholesterol ratio, the main aim of this study is to investigate the most suitable amount of cholesterol in lipids in order to prepare stable and controlled drug release vehicles. For the preparation of liposomes, DMPC, DPPC and DSPC phospholipids were used and combined with different molar ratios of cholesterol (e.g. 100, 80–20, 70–30, 60–40 and 50–50 %). Stability studies were conducted by storing the formulations at 37 and 50 °C for 30 days and by analysing them by AFM, DLS and FT-IR. By detecting the two most stable formulations from the stability results, drug encapsulation and in vitro release studies in PBS were performed by encapsulating atenolol and quinine. The release results were validated using a simulation model to ensure the reliability and suitable interpretation of the data. The generated model showed a good correlation between the prediction and the in vitro obtained results. By using 70:30 % ratio (known in literature as 2:1), it is possible to reach the most stable formulation to guarantee a controlled and reproducible release for drugs with different physicochemical characteristics and pharmaceutical applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Yadav AV, Murthy MS, Shete AS, Sfurti S. Stability aspects of liposomes. Ind J Pharm Edu Res. 2011;45:402–13.

    Google Scholar 

  2. 2.

    Sharma A, Sharma US. Review: liposomes in drug delivery: progress and limitations. Int J of Pharmaceuties. 1997;154:123–40.

    Article  CAS  Google Scholar 

  3. 3.

    Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1:297–315.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. 4.

    Fattal E, Couvreur P, Dubernet C. Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes time. Adv Drug Deliv Rev. 2004;56:931–46.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Maruyama K, Ishida O, Takizawa T. Possibility of active targeting to tissue with liposomes. Adv Drug DelivRev. 1999;40:89–102.

    Article  CAS  Google Scholar 

  6. 6.

    Bouwstra JA, Honneywell-Nguyen PL. Skin structure and mode of action of vesicles. Adv Drug Deliv Rev. 2002;54:S41–55.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Kaur PI, Garg A, Singla KA. Vesicular systems in ocular drug delivery: an overview. Int J Pharm. 2004;269:1–14.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Barber R, Shek P. Liposomes as a topical ocular drug delivery system. In: Rolland A, editor. Pharmaceutical particulate carries. New York: Marcel Dekker; 1993. p. 1–20.

    Google Scholar 

  9. 9.

    Barry BW. Novel mechanism and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14:101–14.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Xue YY. Modern pharmaceutics (Ping Q. N.). Beijing: China Med-Tech Science; 1995. p. 588–62.

    Google Scholar 

  11. 11.

    Tseng LP, Liang HJ, Chung TW, Huang YY, Liu DZ. Liposomes incorporated with cholesterol for drug release triggered by magnetic field. J Med Biol Eng. 2007;27:29–34.

    Google Scholar 

  12. 12.

    Ceh B, Lasic DD. A rigorous theory of vesicle loading. Longmuir II. 1995;1141:3356–64.

    Article  Google Scholar 

  13. 13.

    Demel RA, De Kruyff B. The function of sterols in membranes. BiochimBiophysActa. 1976;457:109–32.

    CAS  Google Scholar 

  14. 14.

    Papahadjopoulos D, Jacobson K, Nir S, Isac T. Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. BiochimBiophys. 1973;311:330–48.

    CAS  Google Scholar 

  15. 15.

    Virden JW, Berg JC. NaCl-induced aggregation of dipalmitoylphosphatylglycerol small unilamellar vesicles with varying amounts of incorporated cholesterol. Langmuir. 1992;8:1532–7.

    Article  CAS  Google Scholar 

  16. 16.

    Liu DZ, Chen WY, Tasi LM, Yang SP. Microcalorimetric and shear studies on the effects of cholesterol on the physical stability of lipid vesicles. Colloids Surfaces. 2000;172:57–67.

    Article  CAS  Google Scholar 

  17. 17.

    Mohammed AR, Weston N, Coombesa AGA, Fitzgerald M, Perrie Y. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int J Pharmaceutics. 2004;285:23–34.

    Article  CAS  Google Scholar 

  18. 18.

    Needham D, Nunn RS. Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys J. 1990;58:997–1009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. 19.

    Gregoriadis G, Davis C. Stability of liposomes in vivo and in vitro is promoted by their cholesterol content in the presence of blood cells. BiochimBiophys Res Commun. 1979;90:1287–93.

    Article  Google Scholar 

  20. 20.

    Kirby C, Gregoriadis G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J. 1980;186:591–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. 21.

    Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13:238–52.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Fatouros D, Gortzi O, Klepetsanis P, Antimisiaris SG, Stuart MCA, Brisson A, et al. Preparation and properties of arsonolipid containing liposomes. Chem Phys Lipids. 2001;109:75–89.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Modi S, Bradley AD. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol Pharmaceutics. 2013;10:3076–89.

    Article  CAS  Google Scholar 

  24. 24.

    Joguparthi V, Xiang TX, Anderson BD. Liposome transport of hydrophobic drugs: gel phase lipid bilayer permeability and partitioning of the lactone form of a hydrophobic camptothecin, DB-67. J Pharm Sci. 2008;97:400–20.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Katrin K, Christel C, Muller G. Diclofenac release from phospholipid drug system and permeation through excised human stratum corneum. Int J Pharm. 1995;125:231–42.

    Article  Google Scholar 

  26. 26.

    Bari S, Sathe S, Jain P, Surana S. Spectrophotometric method for simultaneous estimation of atenolol in combination with losartan potassium and hydrocholorothiazide in bulk and tablet formulation. J Pharm Bioallied Sci. 2010;2:372–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. 27.

    Cheon T, Cheong BS, Cho HG, Kim JH, Kim KS. Quinine assay with home-built UV-led fluorometer: quantitative analysis, photo-bleaching, fluorescence quenching, and urine analysis. J Korean Chem Soc. 2012;5:577–82.

    Article  Google Scholar 

  28. 28.

    Peppas A, Sahlin JJ. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57:169–72.

    Article  CAS  Google Scholar 

  29. 29.

    Berger N, Sachse A, Bender J, Schubert R, Brandl M. Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics. Int J Pharm. 2001;223:55–68.

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Cevc G. How membrane chain melting properties are regulated by the polar surface of the lipid bilayer. Biochemistry. 1987;26:6305–10.

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Hodzic A, Rappolt M, Amenitsch H, Laggner P, Pabst G. Differential modulation of membrane structure and fluctuations by plant sterols and cholesterol. Biophys J. 2008;94:3935–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. 32.

    Kučerka N, Nieh MP, Katsaras J. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. BiochimicaetBiophysicaActa. 2011;1808:2761–71.

    Google Scholar 

  33. 33.

    Yi Z, Nagao M, Bossev DP. Bending elasticity of saturated and monosaturated phospholipid membranes studied by neutron spin echo technique. J Phys Condens Matter. 2009;21:155104.

    Article  PubMed  Google Scholar 

  34. 34.

    Albrecht TR, Grutter P, Horne D, Rugard D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys. 1991;69:668–73.

    Article  Google Scholar 

  35. 35.

    Zhong Q, Inniss D, Kjoller K, Elings VB. Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surface Sci Lett. 1993;290:688–92.

    Google Scholar 

  36. 36.

    Liang X, Mao G, Ng SKY. Mechanical properties and stability measurement of cholesterol-containing liposome on mica by atomic force microscopy. J Colloid Interface Sci. 2004;278:53–62.

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Ruozi B, Belletti D, Tombesi A, Tosi G, Bondioli L, Forni F, et al. AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study. Int J Nanomedicine. 2011;6:557–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. 38.

    Jass J, Tjarnhage T, Puu G. From liposomes to supported, planar bilayer structures on hydrophilic and hydrophobic surfaces: an atomic force microscopy study. Biophys J. 2000;79:3153–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. 39.

    Ruozi B, Tosi G, Forni F, Fresta M, Vandelli MA. Atomic force microscopy and photon correlation spectroscopy: two techniques for rapid characterization of liposomes. Eur J Pharm Sci. 2005;25:81–9.

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Kanno T, Yamada T, Iwabuki H, Tanaka H, Kuroda S, Tanizawa K, et al. Size distribution measurement of vesicles by atomic force microscopy. AnalBiochem. 2002;309:196.

    CAS  Google Scholar 

  41. 41.

    Onyesom I, Lamprou DA, Sygellou L, Owusu-Ware S, Antonijevic M, Chowdhry BZ, et al. Sirolimus encapsulated liposomes for cancer therapy: physicochemical and mechanical characterization of sirolimus distribution within liposome bilayers. Mol Pharmaceutics. 2013;10:4281–93.

    Article  CAS  Google Scholar 

  42. 42.

    Casal HL, Mantsch HH. Polymorphic phase behavior of phospholipid membranes studied by infrared spectroscopy. Biochim Biophys Acta. 1984;779:381–401.

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Severcan F, Sahin I, Kazanci N. Melatonin strongly interacts with zwitterionic model membranes—evidence from Fourier transform infrared spectroscopy and differential scanning calorimetry. BBA Biomembranes. 2005;1668:215–22.

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Jiang CH, Gamarnik A, Tripp CP. Identification of lipid aggregate structures on TiO2 surface using headgroup IR bands. J Phys Chem B. 2005;109:4539–44.

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Nii T, Ishii F. Encapsulation efficiency of water-soluble and insoluble drugs in liposomes prepared by the microencapsulation vesicle method. Int J Pharm. 2005;298:198–205.

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Balasubramanian SV, Straubinger RM. Taxol-lipid interactions: taxol-dependent effects on the physical properties of model membranes. Biochemistry. 1994;33:8941.

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Needham D, Sarpal RS. Binding of paclitaxel to lipid interfaces: correlations with interface compliance. J Liposome Res. 1998;8:147–63.

    Article  CAS  Google Scholar 

  48. 48.

    Subczynski WK, Wisniewska A, Yin JJ, Hyde JS, Kusumi A. Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry. 1994;33:7670–81.

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Hua S. Comparison of in vitro dialysis release methods of loperamide-encapsulated liposomal gel for topical drug delivery. Int J Nanomedicine. 2014;9:735–44.

    Article  PubMed Central  PubMed  Google Scholar 

  50. 50.

    Saarinen-Savolainen P, Jarvinen T, Taipale H, Urtti A. Method for evaluating drug release from liposomes in sink conditions. Int J Pharm. 1997;159:27–33.

    Article  CAS  Google Scholar 

  51. 51.

    Yerushalmi N, Margalit R. Bioadhesive, collagen modified liposomes: molecular and cellular level studies on the kinetics of drug release and on binding to cell monolayers. Biochim Biophys Acta. 1994;1189:13–20.

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Taly A, Baciou L, Sebban P. The DMPC lipid phase transition influences differently the first and the second electron transfer reactions in bacterial reaction centers. Febs Letters. 2002;532:91–6.

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Schubert T, Schneck E, Tanaka M. First order melting transitions of highly ordered dipalmitoyl phosphatidylcholine gel phase membranes in molecular dynamics simulations with atomistic detail. J Chem Phys. 2011;135:055105.

    Article  PubMed  Google Scholar 

  54. 54.

    Hansch C, Leo A, Hoekman DH. Exploring QSAR, fundamentals and application in chemistry and biology. Washington: American Chemical Society; 1995.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC) for use of their facilities.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dimitrios A. Lamprou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Briuglia, M., Rotella, C., McFarlane, A. et al. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. and Transl. Res. 5, 231–242 (2015). https://doi.org/10.1007/s13346-015-0220-8

Download citation

Keywords

  • Cholesterol
  • Liposomes
  • Controlled release
  • AFM
  • Mathematical modelling