Drug Delivery and Translational Research

, Volume 5, Issue 1, pp 15–26 | Cite as

RGD-conjugated solid lipid nanoparticles inhibit adhesion and invasion of αvβ3 integrin-overexpressing breast cancer cells

  • Dan Shan
  • Jason Li
  • Ping Cai
  • Preethy Prasad
  • Franky Liu
  • Andrew Michael Rauth
  • Xiao Yu Wu
Research Article


αvβ3 integrin receptors expressed on cancer cell surfaces play a crucial role in promoting tumor angiogenesis and cancer cell metastasis. Thus, cyclic arginyl-glycyl-aspartic acid (cRGD) peptides have been explored as a αvβ3 integrin receptor-specific targeting moiety for the targeted delivery of nanoparticle-loaded therapeutics. However, our previous study showed that cyclic RGD could act as a double-edged sword that, on one hand, extended the retention of cRGD-modified solid lipid nanoparticles (RGD-SLNs) at αvβ3 integrin receptor overexpressing breast carcinoma, and yet on the other hand, decreased the amount of tumor accumulation of RGD-SLNs attributable to the greater uptake by the mononuclear phagocyte system (MPS). Therefore, we aimed to optimize the RGD-decorated nanoparticle systems for (1) inhibiting αvβ3 integrin receptor overexpressing tumor cell metastasis and (2) increasing nanoparticle accumulation to tumor site. SLNs with cRGD content ranging from 0 to 10 % mol of total polyethyleneglycol (PEG) chains were synthesized. The binding of RGD-SLNs with αvβ3 integrin receptors increased with increasing cRGD concentration on the nanoparticles. RGD-SLNs were demonstrated to inhibit MDA-MB-231 cell adhesion to fibronectin and invasion through Matrigel. In vivo whole-body fluorescence imaging revealed that 1 % cRGD on the SLNs’ surface had maximum tumor accumulation with extended tumor retention among all formulations tested in an orthotopic MDA-MB-231/EGFP breast tumor model. This work has laid a foundation for further development of anticancer drug-loaded optimized cRGD nanoparticle formulations for the treatment of breast cancer metastasis.


RGD conjugated solid lipid nanoparticle αvβ3 integrin receptor Cell adhesion Cell invasion Metastasis Triple negative breast cancer cell 



This work was funded by the Canadian Breast Cancer Foundation-Ontario Region. The authors also acknowledge the scholarships from the National Science and Engineering Research Council of Canada to D. Shan and J. Li, the University of Toronto Fellowships to D. Shan and P. Prasad, and the University of Toronto Nanotechnology Network Award and Anna and Alex Beverly Fellowship to D. Shan.

Animal studies

All institutional and national guidelines for the care and use of laboratory animals were followed

Conflict of interest

D. Shan, P. Cai, J. Li, P. Prasad, F. Liu, A.M. Rauth, and X.Y. Wu declare that they have no conflict of interest.


  1. 1.
    Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9–22.PubMedCrossRefGoogle Scholar
  2. 2.
    Assoian RK, Klein EA. Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol. 2008;18(7):347–52.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994;264(5158):569–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Felding-Habermann B, O’Toole TE, Smith JW, Fransvea E, Ruggeri ZM, Ginsberg MH, et al. Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci U S A. 2001;98(4):1853–8.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Huveneers S, van den Bout I, Sonneveld P, Sancho A, Sonnenberg A, Danen EH. Integrin alpha v beta 3 controls activity and oncogenic potential of primed c-Src. Cancer Res. 2007;67(6):2693–700.PubMedCrossRefGoogle Scholar
  6. 6.
    Kumar CC, Armstrong L, Yin Z, Malkowski M, Maxwell E, Ling H, et al. Targeting integrins alpha v beta 3 and alpha v beta 5 for blocking tumor-induced angiogenesis. Adv Exp Med Biol. 2000;476:169–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Pytela R, Pierschbacher MD, Ruoslahti E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell. 1985;40(1):191–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen K, Chen X. Integrin targeted delivery of chemotherapeutics. Theranostics. 2011;1:189–200.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Wang Z, Chui WK, Ho PC. Integrin targeted drug and gene delivery. Expert Opin Drug Deliv. 2010;7(2):159–71.PubMedCrossRefGoogle Scholar
  10. 10.
    Miura Y, Takenaka T, Toh K, Wu S, Nishihara H, Kano MR, et al. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood–brain tumor barrier. ACS Nano. 2013;7(10):8583–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhan C, Gu B, Xie C, Li J, Liu Y, Lu W. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J Control Release. 2010;143(1):136–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Shen M, Huang Y, Han L, Qin J, Fang X, Wang J, et al. Multifunctional drug delivery system for targeting tumor and its acidic microenvironment. J Control Release : Off J Control Release Soc. 2012;161(3):884–92.CrossRefGoogle Scholar
  13. 13.
    Jiang X, Xin H, Gu J, Xu X, Xia W, Chen S, et al. Solid tumor penetration by integrin-mediated pegylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel. Biomaterials. 2013;34(6):1739–46.PubMedCrossRefGoogle Scholar
  14. 14.
    van de Ven AL, Kim P, Haley O, Fakhoury JR, Adriani G, Schmulen J, et al. Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J Control Release : Off J Control Release Soc. 2012;158(1):148–55.CrossRefGoogle Scholar
  15. 15.
    Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A. 2007;104(39):15549–54.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Choi CHJ, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A. 2010;107(3):1235–40.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong KL, Nielsen UB, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006;66(13):6732–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Shuhendler AJ, Prasad P, Leung M, Rauth AM, Dacosta RS, Wu XY. A novel solid lipid nanoparticle formulation for active targeting to tumor alpha(v) beta(3) integrin receptors reveals cyclic RGD as a double-edged sword. Adv Healthc Mater. 2012;1(5):600–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Georgoulis A, Havaki S, Drosos Y, Goutas N, Vlachodimitropoulos D, Aleporou-Marinou V, et al. RGD binding to integrin Alphavbeta3 affects cell motility and adhesion in primary human breast cancer cultures. Ultrastruct Pathol. 2012;36(6):387–99.PubMedCrossRefGoogle Scholar
  20. 20.
    Li S, Wei J, Yuan L, Sun H, Liu Y, Zhang Y, et al. RGD-modified endostatin peptide 30 derived from endostatin suppresses invasion and migration of HepG2 cells through the alphavbeta3 pathway. Cancer Biother Radiopharm. 2011;26(5):529–38.PubMedCrossRefGoogle Scholar
  21. 21.
    Gehlsen KR, Argraves WS, Pierschbacher MD, Ruoslahti E. Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides. J Cell Biol. 1988;106(3):925–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Elias DR, Poloukhtine A, Popik V, Tsourkas A. Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomedicine. 2012.Google Scholar
  23. 23.
    Hak S, Helgesen E, Hektoen HH, Huuse EM, Jarzyna PA, Mulder WJ, et al. The effect of nanoparticle polyethylene glycol surface density on ligand-directed tumor targeting studied in vivo by dual modality imaging. ACS Nano. 2012;6(6):5648–58.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Waite CL, Roth CM. Binding and transport of PAMAM-RGD in a tumor spheroid model: the effect of RGD targeting ligand density. Biotechnol Bioeng. 2011;108(12):2999–3008.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Shuhendler AJ, Prasad P, Chan HK, Gordijo CR, Soroushian B, Kolios M, et al. Hybrid quantum dot-fatty ester stealth nanoparticles: toward clinically relevant in vivo optical imaging of deep tissue. ACS Nano. 2011;5(3):1958–66.PubMedCrossRefGoogle Scholar
  26. 26.
    Humphries JD, Schofield NR, Mostafavi-Pour Z, Green LJ, Garratt AN, Mould AP, et al. Dual functionality of the anti-beta1 integrin antibody, 12G10, exemplifies agonistic signalling from the ligand binding pocket of integrin adhesion receptors. J Biol Chem. 2005;280(11):10234–43.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Belvisi L, Riccioni T, Marcellini M, Vesci L, Chiarucci I, Efrati D, et al. Biological and molecular properties of a new alpha(v)beta3/alpha(v)beta5 integrin antagonist. Mol Cancer Ther. 2005;4(11):1670–80.PubMedCrossRefGoogle Scholar
  28. 28.
    Humphries MJ. Cell adhesion assays. Methods Mol Biol. 2009;522:203–10.PubMedCrossRefGoogle Scholar
  29. 29.
    Moutasim KA, Nystrom ML, Thomas GJ. Cell migration and invasion assays. Methods Mol Biol. 2011;731:333–43.PubMedCrossRefGoogle Scholar
  30. 30.
    Wong NC, Mueller BM, Barbas CF, Ruminski P, Quaranta V, Lin EC, et al. Alphav integrins mediate adhesion and migration of breast carcinoma cell lines. Clin Exp Metastasis. 1998;16(1):50–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 2013;81(1):136–47.PubMedCrossRefGoogle Scholar
  32. 32.
    Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker Jr JR, Banaszak Holl MM. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol. 2007;14(1):107–15.PubMedCrossRefGoogle Scholar
  33. 33.
    Shukla R, Thomas TP, Peters J, Kotlyar A, Myc A, Baker Jr JR. Tumor angiogenic vasculature targeting with PAMAM dendrimer-RGD conjugates. Chem Commun (Camb). 2005(46):5739–41.Google Scholar
  34. 34.
    Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol. 2010;197:3–53.PubMedCrossRefGoogle Scholar
  35. 35.
    Grobmyer SR, Zhou G, Gutwein LG, Iwakuma N, Sharma P, Hochwald SN. Nanoparticle delivery for metastatic breast cancer. Nanomedicine. 2012;8 Suppl 1:S21–30.PubMedCrossRefGoogle Scholar
  36. 36.
    Shokeen M, Pressly ED, Hagooly A, Zheleznyak A, Ramos N, Fiamengo AL, et al. Evaluation of multivalent, functional polymeric nanoparticles for imaging applications. ACS Nano. 2011;5(2):738–47.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Hrkach J, Von Hoff D, Mukkaram Ali M, Andrianova E, Auer J, Campbell T et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 2012;4(128):128ra39.Google Scholar
  38. 38.
    Bauer K, Mierke C, Behrens J. Expression profiling reveals genes associated with transendothelial migration of tumor cells: a functional role for alphavbeta3 integrin. Int J Cancer. 2007;121(9):1910–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Takayama S, Ishii S, Ikeda T, Masamura S, Doi M, Kitajima M. The relationship between bone metastasis from human breast cancer and integrin alpha(v)beta3 expression. Anticancer Res. 2005;25(1A):79–83.PubMedGoogle Scholar
  40. 40.
    Pal SK, Childs BH, Pegram M. Triple negative breast cancer: unmet medical needs. Breast Cancer Res Treat. 2011;125(3):627–36.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Li ZB, Cai W, Cao Q, Chen K, Wu Z, He L, et al. (64)Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression. J Nucl Med. 2007;48(7):1162–71.PubMedCrossRefGoogle Scholar
  43. 43.
    Liu S. Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug Chem. 2009;20(12):2199–213.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 2003;42(6):463–78.PubMedCrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2014

Authors and Affiliations

  • Dan Shan
    • 1
  • Jason Li
    • 1
  • Ping Cai
    • 1
  • Preethy Prasad
    • 1
  • Franky Liu
    • 1
  • Andrew Michael Rauth
    • 2
  • Xiao Yu Wu
    • 1
  1. 1.Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoCanada
  2. 2.Department of Medical BiophysicsUniversity of TorontoTorontoCanada

Personalised recommendations