Skip to main content

Advertisement

Log in

Drug-free macromolecular therapeutics induce apoptosis of patient chronic lymphocytic leukemia cells

  • Clinical Research
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

A new drug-free nanotherapeutic approach for B-cell malignancies was developed. Exposure of B-cells to an anti-CD20 Fab’-morpholino oligonucleotide1 (MORF1) conjugate decorated the cell surface with MORF1; further exposure of the decorated cells to multivalent polymer-oligonucleotide2 conjugates (P-MORF2) resulted in CD20 clustering at the cell surface with induction of apoptosis. We evaluated this concept in chronic lymphocytic leukemia (CLL) cells isolated from ten patients. Apoptosis and cytotoxicity were observed in eight samples, including two samples with the 17p13 deletion, which suggested a p53-independent mechanism of apoptosis induction. When compared to an anti-CD20 monoclonal antibody (mAb), the nanotherapeutic showed significantly more potent apoptosis-inducing activity and cytotoxicity. This was due to the multivalency effect (eight binding sites per polymer chain) of our design in comparison to the divalent mAb. In conclusion, we have developed a novel and potent therapeutic system against CLL and other B-cell malignancies with significant advantages over conventional chemoimmunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics 2014. CA Cancer J Clin. 2014;64:9–29.

    Article  PubMed  Google Scholar 

  2. Hofmeister JK, Cooney D, Coggeshall KM. Clustered CD20 induced apoptosis: src-family kinase, the proximal regulator of tyrosine phosphorylation, calcium influx, and caspase 3-dependent apoptosis. Blood Cells Mol Dis. 2000;26:133–43.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang N, Khawli LA, Hu P, Epstein AL. Generation of rituximab polymer may cause hyper-cross-linking-induced apoptosis in non-Hodgkin’s lymphomas. Clin Cancer Res. 2005;11:5971–80.

    Article  CAS  PubMed  Google Scholar 

  4. Chu T-W, Yang J, Kopeček J. Anti-CD20 multivalent HPMA copolymer-Fab’ conjugates for the direct induction of apoptosis. Biomaterials. 2012;33:7174–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chu T-W, Yang J, Zhang R, Sima M, Kopeček J. Cell surface self-assembly of hybrid nanoconjugates via oligonucleotide hybridization induces apoptosis. ACS Nano. 2014;8:719–30.

    Article  CAS  PubMed  Google Scholar 

  6. Press OW, Appelbaum F, Ledbetter JA, et al. Monoclonal antibody 1F5 (anti-CD20) serotherapy of human B cell lymphomas. Blood. 1987;69:584–91.

  7. Byrd JC, Jones JJ, Woyach JA, Johnson AJ, Flynn JM. Entering the era of targeted therapy for chronic lymphocytic leukemia: Impact on the practicing clinician. J Clin Oncol. 2014;32:3039–47.

    Article  Google Scholar 

  8. van der Kolk LE, Evers LM, Omene C, et al. CD20-induced B cell death can bypass mitochondria and caspase activation. Leukemia. 2002;16:1735–44.

    Article  PubMed  Google Scholar 

  9. Shan D, Ledbetter JA, Press OW. Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies. Blood. 1998;91:1644–52.

    CAS  PubMed  Google Scholar 

  10. Johnson RN, Kopečková P, Kopeček J. Synthesis and evaluation of multivalent branched HPMA copolymer − Fab′ conjugates targeted to the B-cell antigen CD20. Bioconjug Chem. 2009;20:129–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Johnson RN, Kopečková P, Kopeček J. Biological activity of anti-CD20 multivalent HPMA copolymer − Fab’ conjugates. Biomacromolecules. 2012;13:727–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Aluri SR, Shi P, Gustafson JA, et al. A hybrid protein-polymer nanoworm potentiates apoptosis better than a monoclonal antibody. ACS Nano. 2014;8:2064–76.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Z, Eckert MA, Ali MM, et al. DNA-scaffolded multivalent ligands to modulate cell function. ChemBioChem. 2014;15:1268–73.

    Article  CAS  PubMed  Google Scholar 

  14. Pan H, Yang J, Kopečková P, Kopeček J. Backbone degradable multiblock N-(2-hydroxypropyl)methacrylamide copolymer conjugates via reversible addition-fragmentation chain transfer polymerization and thiol-ene coupling reaction. Biomacromolecules. 2011;12:247–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Yang J, Luo K, Pan H, Kopečková P, Kopeček J. Synthesis of biodegradable multiblock copolymers by click coupling of RAFT-generated heterotelechelic polyHPMA conjugates. React Funct Polym. 2011;71:294–302.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Zhang R, Yang J, Sima M, Zhou Y, Kopeček J. Sequential combination therapy of ovarian cancer with degradable N-(2-hydroxypropyl)methacrylamide copolymer paclitaxel and gemcitabine conjugates. Proc Natl Acad Sci U S A. 2014;111:12181–6.

    Article  CAS  PubMed  Google Scholar 

  17. Danilov AV. Targeted therapy in chronic lymphocytic leukemia: Past, present, and future. Clin Ther. 2013;35:1258–70.

    Article  CAS  PubMed  Google Scholar 

  18. Goodwin DA, Meares CF. Advances in pretargeting biotechnology. Biotechnol Adv. 2001;19:435–50.

    Article  CAS  PubMed  Google Scholar 

  19. Gunn J, Park SI, Veiseh O, Press OW, Zhang M. A pretargeted nanoparticle system for tumor cell labeling. Mol Biosyst. 2011;7:742–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grant GM95606 (to J.K.) from the National Institute of General Medical Sciences and the University of Utah Research Foundation. The authors thank Dr. Ruozhen Hu for assisting with cell cycle analysis and Dr. Jiyuan Yang and Dr. Rui Zhang for helpful discussions.

Conflict of interest

J.K. and T.-W.C. are inventors on a pending US patent application (PCT/US2014/023784; assigned to the University of Utah) related to this work. J.K. is Chief Scientific Advisor and P.J.S. Chief Medical Advisor for Bastion Biologics. Otherwise, the authors declare no relevant financial interests.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindřich Kopeček.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, TW., Kosak, K.M., Shami, P.J. et al. Drug-free macromolecular therapeutics induce apoptosis of patient chronic lymphocytic leukemia cells. Drug Deliv. and Transl. Res. 4, 389–394 (2014). https://doi.org/10.1007/s13346-014-0209-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-014-0209-8

Keywords

Navigation