Drug Delivery and Translational Research

, Volume 4, Issue 3, pp 222–232 | Cite as

Iontophoretic skin permeation of peptides: an investigation into the influence of molecular properties, iontophoretic conditions and formulation parameters

  • Gayathri Krishnan
  • Michael S. Roberts
  • Jeffrey Grice
  • Yuri G. Anissimov
  • Hamid R. Moghimi
  • Heather A. E. Benson
Research Article

Abstract

The transdermal route offers advantages for delivery of peptides and proteins. However, these polar and large molecules do not permeate the skin barrier well. Various enhancement methods have been employed to address this problem. Iontophoresis is one of the methods that shows promise but its application to peptide delivery has yet to be fully explored. This study investigates the effects of different molecular properties and iontophoretic conditions on the skin permeation of peptides. In this study, the permeation of alanine-tryptophan dipeptide (MW 276 Da), alanine–alanine–proline–valine tetrapeptide (MW 355 Da), Argireline® (Acetyl hexapeptide-3, MW 889 Da) and Triptorelin acetate (decapeptide, MW 1311 Da) through excised human skin under passive or iontophoretic current of 0.4 mA was investigated. The effects of pH change (3.0–7.4, to provide different net negative, neutral, and positive charges) to the peptide, donor concentration (1–10 mg/ml), background electrolyte (34–137 mM NaCl and/or 5–20 mM HEPES) and current direction (anodal vs cathodal) were also studied. Peptides were analysed by high-performance liquid chromatography or liquid scintillation counting. Iontophoresis led up to a 30 times increase in peptide permeation relative to passive permeation for the peptides. Electroosmosis was an important determinant of the total flux for the high molecular weight charged peptides. Electrorepulsion was found to be considerable for low molecular weight charged moieties. Permeation was decreased at lower pH, possibly due to decreased electroosmosis. Results also showed that 10 times increase in donor peptide concentration increases permeation of peptides by about 2–4 times and decreases iontophoretic permeability coefficients by about 2.5–5 times. The addition of extra background electrolyte decreased the iontophoretic permeation coefficient of peptides by 2–60 times. This study shows that iontophoretic permeation of peptides is affected by a number of parameters that can be optimized for effective transdermal peptide delivery.

Keywords

Percutaneous absorption Peptide and proteins delivery Iontophoresis Molecular weight and charge Electroosmosis Skin penetration 

References

  1. 1.
    Namjoshi S, Cacetta R, Benson HA. Skin peptides: biological activity and therapeutic opportunities. J Pharm Sci. 2008;97:2524–42.CrossRefPubMedGoogle Scholar
  2. 2.
    Benson HA, Namjoshi S. Proteins and peptides: strategies for delivery to and across the skin. J Pharm Sci. 2008;97:3591–610.CrossRefPubMedGoogle Scholar
  3. 3.
    Delgado-Charro MB, Guy RH. Iontophoresis: application in drug delivery and noninvasive monitoring. In: Hadgraft J, Guy RH, editors. Transdermal drug delivery. New York: Marcel Dekker; 2003. p. 199–225.Google Scholar
  4. 4.
    Pikal MJ. The role of electroosmotic flow in transdermal iontophoresis. Adv Drug Deliv Rev. 2001;46:281–305.CrossRefPubMedGoogle Scholar
  5. 5.
    Guy RH, Kalia YN, Delgado-Charro MB, Merino V, Lopez A, Marro D. Iontophoresis: electrorepulsion and electroosmosis. J Control Rel. 2000;64:129–32.CrossRefGoogle Scholar
  6. 6.
    Abla N, Naik A, Guy RH, Kalia YN. Contributions of electromigration and electroosmosis to peptide iontophoresis across intact and impaired skin. J Control Rele. 2005;108:319–30.CrossRefGoogle Scholar
  7. 7.
    Gratieri T, Kalia YN. Mathematical models to describe iontophoretic transport in vitro and in vivo and the effect of current application on the skin barrier. Adv Drug Deliv Rev. 2013;65:315–29.CrossRefPubMedGoogle Scholar
  8. 8.
    Marro D, Kalia YN, Delgado-Charro MB, Guy RH. Contributions of electromigration and electroosmosis to iontophoretic drug delivery. Pharm Res. 2001;18:1701–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Marro D, Kalia YN, Delgado-Charro MB, Guy RH. Optimizing iontophoretic drug delivery: identification and distribution of the charge-carrying species. Pharm Res. 2001;18:1709–13.CrossRefPubMedGoogle Scholar
  10. 10.
    Green PG, Hinz RS, Kim A, Szoka Jr FC, Guy RH. Iontophoretic delivery of a series of tripeptides across the skin in vitro. Pharm Res. 1991;8:1121–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Green PG, Hinz RS, Cullander C, Yamane G, Guy RH. Iontophoretic delivery of amino acids and amino acid derivatives across the skin in vitro. Pharm Res. 1991;8:1113–20.CrossRefPubMedGoogle Scholar
  12. 12.
    Turner NG, Guy RH. Iontophoretic transport pathways: dependence on penetrant physicochemical properties. J Pharm Sci. 1997;86:1385–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Lopez RF, Bentley MV, Begona Delgado-Charro M, Guy RH. Optimization of aminolevulinic acid delivery by iontophoresis. J Control Rel. 2003;88:65–70.CrossRefGoogle Scholar
  14. 14.
    Lopez RF, Bentley MV, Delgado-Charro MB, Guy RH. Iontophoretic delivery of 5-aminolevulinic acid (ALA): effect of pH. Pharm Res. 2001;18:311–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Lopez RF, Bentley MV, Delgado-Charro MB, Salomon D, van den Bergh H, Lange N, et al. Enhanced delivery of 5-aminolevulinic acid esters by iontophoresis in vitro. Photochem Photobiol. 2003;77:304–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Krishnan G, Roberts MS, Grice J, Anissimov YG, Benson HA. Enhanced transdermal delivery of 5-aminolevulinic acid and a dipeptide by iontophoresis. Biopolymers. 2011;96:166–71.CrossRefPubMedGoogle Scholar
  17. 17.
    Lai PM, Roberts MS. An analysis of solute structure–human epidermal transport relationships in epidermal iontophoresis using the ionic mobility: pore model. J Control Rel. 1999;58:323–33.CrossRefGoogle Scholar
  18. 18.
    Gerscher S, Connelly JP, Griffiths J, Brown SB, MacRobert AJ, Wong G, et al. Comparison of the pharmacokinetics and phototoxicity of protoporphyrin IX metabolized from 5-aminolevulinic acid and two derivatives in human skin in vivo. Photochem Photobiol. 2000;72:569–74.CrossRefPubMedGoogle Scholar
  19. 19.
    Bodde HE, Roemele PE, Star WM. Quantification of topically delivered 5-aminolevulinic acid by lontophoresis across ex vivo human stratum corneum. Photochem Photobiol. 2002;75:418–23.CrossRefPubMedGoogle Scholar
  20. 20.
    Ferreira DM, Saga YY, Aluicio-Sarduy E, Tedesco AC. Chitosan nanoparticles for melanoma cancer treatment by photodynamic therapy and electrochemotherapy using aminolevulinic acid derivatives. Curr Med Chem. 2013;20:1904–11.CrossRefPubMedGoogle Scholar
  21. 21.
    Krishnan G, Grice JE, Roberts MS, Benson HA, Prow TW. Enhanced sonophoretic delivery of 5-aminolevulinic acid: preliminary human ex vivo permeation data. Skin Res Technol. 2013;19:e283–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Namjoshi S, Caccetta R, Edwards J, Benson HA. Liquid chromatography assay for 5-aminolevulinic acid: application to in vitro assessment of skin penetration via dermaportation. J Chromatogr B. 2007;852:49–55.CrossRefGoogle Scholar
  23. 23.
    Mikolajewska P, Donnelly RF, Garland MJ, Morrow DI, Singh TR, Iani V, et al. Microneedle pre-treatment of human skin improves 5-aminolevulininc acid (ALA)- and 5-aminolevulinic acid methyl ester (MAL)-induced PpIX production for topical photodynamic therapy without increase in pain or erythema. Pharm Res. 2010;27:2213–20.CrossRefPubMedGoogle Scholar
  24. 24.
    Hornebeck W, Moczar E, Szecsi J, Robert L. Fatty acid peptide derivatives as model compounds to protect elastin against degradation by elastases. Biochem Pharmacol. 1985;34:3315–21.CrossRefPubMedGoogle Scholar
  25. 25.
    Blanes-Mira C, Clemente J, Jodas G, Gil A, Fernandez-Ballester G, Ponsati B, et al. A synthetic hexapeptide (Argireline) with antiwrinkle activity. Int J Cosmet Sci. 2002;24:303–10.CrossRefPubMedGoogle Scholar
  26. 26.
    Blanes-Mira C, Merino JM, Valera E, Fernandez-Ballester G, Gutierrez LM, Viniegra S, et al. Small peptides patterned after the N-terminus domain of SNAP25 inhibit SNARE complex assembly and regulated exocytosis. J Neurochem. 2004;88:124–35.CrossRefPubMedGoogle Scholar
  27. 27.
    Nicoli S, Rimondi S, Colombo P, Santi P. Physical and chemical enhancement of transdermal delivery of triptorelin. Pharm Res. 2001;18:1634–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Nicoli S, Santi P, Couvreur P, Couarraze G, Colombo P, Fattal E. Design of triptorelin loaded nanospheres for transdermal iontophoretic administration. Int J Pharm. 2001;214:31–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Schuetz YB, Naik A, Guy RH, Vuaridel E, Kalia YN. Transdermal iontophoretic delivery of triptorelin in vitro. J Pharm Sci. 2005;94:2175–82.CrossRefPubMedGoogle Scholar
  30. 30.
    Kligman A, Christophers E. Preparation of isolated sheets of human stratum corneum. Arch Dermatol. 1963;88:70–3.CrossRefGoogle Scholar
  31. 31.
    Pikal MJ, Shah S. Transport mechanisms in iontophoresis. III. An experimental study of the contributions of electroosmotic flow and permeability change in transport of low and high molecular weight solutes. Pharm Res. 1990;7:222–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Pikal MJ, Shah S. Transport mechanisms in iontophoresis. II. Electroosmotic flow and transference number measurements for hairless mouse skin. Pharm Res. 1990;7:213–21.CrossRefPubMedGoogle Scholar
  33. 33.
    Mudry B, Guy RH, Begona Delgado-Charro M. Prediction of iontophoretic transport across the skin. J Control Rel. 2006;111:362–7.CrossRefGoogle Scholar
  34. 34.
    Green PG. Iontophoretic delivery of peptide drugs. J Control Rel. 1996;41:33–48.CrossRefGoogle Scholar
  35. 35.
    Bath BD, Scott ER, Phipps JB, White HS. Scanning electrochemical microscopy of iontophoretic transport in hairless mouse skin. Analysis of the relative contributions of diffusion, migration, and electroosmosis to transport in hair follicles. J Pharm Sci. 2000;89:1537–49.CrossRefPubMedGoogle Scholar
  36. 36.
    Huang YY, Wu SM, Wang CY. Response surface method: a novel strategy to optimize iontophoretic transdermal delivery of thyrotropin-releasing hormone. Pharm Res. 1996;13:547–52.CrossRefPubMedGoogle Scholar
  37. 37.
    Delgado-Charro MB, Rodrfguez-Bayon AM, Guy RH. Iontophoresis of nafarelin: effects of current density and concentration on electrotransport in vitro. J Control Rel. 1995;35:35–40.CrossRefGoogle Scholar
  38. 38.
    Miller LL, Kolaskie CJ, Smith GA, Rivier J. Transdermal iontophoresis of gonadotropin releasing hormone (LHRH) and two analogues. J Pharm Sci. 1990;79:490–3.CrossRefPubMedGoogle Scholar
  39. 39.
    Bellatone NH, Rim S, Francoeur ML, Rasadi B. Enhanced percutaneous absorption via iontophoresis I. Evaluation of an in vitro system and transport of model compounds. Int J Pharm. 1986;30:63–72.CrossRefGoogle Scholar
  40. 40.
    Cazares-Delgadillo J, Naik A, Ganem-Rondero A, Quintanar-Guerrero D, Kalia YN. Transdermal delivery of cytochrome C–A 12.4 kDa protein across intact skin by constant-current iontophoresis. Pharm Res. 2007;24:1360–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Mudry B., Guy R.H., Delgado-Charro M.B. Iontophoresis. In: Touitou E., Barry B.A., editors. Transdermal Delivery. Boca Raton: CRC; 2006.Google Scholar
  42. 42.
    Santi P, Guy RH. Reverse iontophoresis—Parameters determining electroosmotic flow: I. pH and ionic strength. J Control Rel. 1996;38:159–65.CrossRefGoogle Scholar
  43. 43.
    Roberts MS, Lai PM, Anissimov YG. Epidermal iontophoresis: I. Development of the ionic mobility-pore model. Pharm Res. 1998;15:1569–78.CrossRefPubMedGoogle Scholar
  44. 44.
    Lai PM, Roberts MS. Epidermal iontophoresis: II. Application of the ionic mobility-pore model to the transport of local anesthetics. Pharm Res. 1998;15:1579–88.CrossRefPubMedGoogle Scholar
  45. 45.
    DelTerzo S, Behl CR, Nash RA. Iontophoretic transport of a homologous series of ionized and nonionized compounds: influence of hydrophobicity and mechanistic interpretation. Pharm Res. 1989;6:89–90.Google Scholar
  46. 46.
    Phipps JB, Padmanabhan RV, Lattin GA. Iontophoretic delivery of model inorganic and drug ions. J Pharm Sci. 1989;78:365–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Yoshida NH, Roberts MS. Structure–transport relationships in transdermal iontophoresis. Adv Drug Deliv Rev. 1992;9:239–64.CrossRefGoogle Scholar
  48. 48.
    Yoshida NH, Roberts MS. Solute molecular size and transdermal iontophoresis across exised human skin. J Control Rel. 1993;25:177–95.CrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2013

Authors and Affiliations

  • Gayathri Krishnan
    • 1
  • Michael S. Roberts
    • 2
    • 3
  • Jeffrey Grice
    • 2
  • Yuri G. Anissimov
    • 4
  • Hamid R. Moghimi
    • 5
  • Heather A. E. Benson
    • 1
  1. 1.School of Pharmacy, CHIRI BioscienceCurtin UniversityPerthAustralia
  2. 2.Therapeutics Research Centre, School of MedicineUniversity of QueenslandBrisbaneAustralia
  3. 3.School of Pharmacy and Medical ScienceUniversity of South AustraliaAdelaideSouth Australia
  4. 4.School of Biomolecular and Physical SciencesGriffith UniversityBrisbaneAustralia
  5. 5.School of PharmacyShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations