Skip to main content

Consideration of the efficacy of non-ionic vesicles in the targeted delivery of oral vaccines

Abstract

The fundamentals of this research were to exploit non-ionic surfactant technology for delivery and administration of vaccine antigens across the oral route and to gain a better understanding of vaccine trafficking. Using a newly developed method for manufacture of non-ionic surfactant vesicles (niosomes and bilosomes) lower process temperatures were adopted thus reducing antigen exposure to potentially damaging conditions. Vesicles prepared by this method offered high protection to enzymatic degradation, with only ∼10 % antigen loss measured when vesicles incorporating antigen were exposed to enzyme digestion. Interestingly, when formulated using this new production method, the addition of bile salt to the vesicles offered no advantage in terms of stability within simulated gastro-intestinal conditions. Considering their ability to deliver antigen to their target site, results demonstrated that incorporation of antigen within vesicles enhanced delivery and targeting of the antigen to the Peyer’s Patch, again with niosomes and bilosomes offering similar efficiency. Delivery to both the Peyer’s patches and mesentery lymphatics was shown to be dose dependent at lower concentrations, with saturation kinetics applying at higher concentrations. This demonstrates that in the formulation of vaccine delivery systems, the lipid/antigen dose ratio is not only a key factor in production cost, but is equally a key factor in the kinetics of delivery and targeting of a vaccine system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Conacher M, Alexander J, Brewer JM. Oral immunisation with peptide and protein antigens by formulation in lipid vesicles incorporating bile salts (bilosomes). Vaccine. 2001;19(20–22):2965–74. doi:10.1016/s0264-410x(00)00537-5.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med. 2005;11(4 Suppl):S45–53. doi:10.1038/nm1213.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Chadwick S, Kriegel C, Amiji M. Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev. 2010;62(4–5):394–407. doi:10.1016/j.addr.2009.11.012.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Wilkhu J, McNeil SE, Kirby DJ, Perrie Y. Formulation design considerations for oral vaccines. Ther Deliv. 2011;2(9):1141–64. doi:10.4155/tde.11.82.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Cesta MF. Normal structure, function, and histology of mucosa-associated lymphoid tissue. Toxicol Pathol. 2006;34(5):599–608. doi:10.1080/01926230600865531.

    Article  PubMed  Google Scholar 

  6. 6.

    Webster DE, Gahan ME, Strugnell RA, Wesselingh SL. Advances in oral vaccine delivery options: what is on the horizon? Am J Drug Deliv. 2003;1(4):227–40.

    Article  Google Scholar 

  7. 7.

    Mowat MA. Anatomical basis of tolerance and immunity to intestinal antigens. Nature. 2003;3:331–41.

    CAS  Google Scholar 

  8. 8.

    Mann JFS, Shakir E, Carter KC, Mullen AB, Alexander J, Ferro VA. Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine. 2009;27(27):3643–9. doi:10.1016/j.vaccine.2009.03.040.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Kartoğlu Ü. Temperature sensitivity of vaccines. Geneva: Switzerland; 2006.

    Google Scholar 

  10. 10.

    Plotkin SA, Fletcher MA. Developments in immunization practices and strategies: implications for vaccine stability. Dev Biol Stand. 1996;87:85–94.

    CAS  PubMed  Google Scholar 

  11. 11.

    Galazka AM, Milstien J, Zaffran M. Thermostability of vaccines: Global programme for Vaccines and Immunization. In: Organization WH, editor. Geneza, Switzerland 1998.

  12. 12.

    Wilkhu JS, McNeil SE, Anderson DE, Perrie Y. Characterization and optimization of bilosomes for oral vaccine delivery. J Drug Target. 2013;21(3):291–9.

    CAS  Article  Google Scholar 

  13. 13.

    Henriksen-Lacey M, Bramwell V, Perrie Y. Radiolabelling of antigen and liposomes for vaccine: biodistribution studies. Pharmaceutics. 2010;2(2):91–104.

    CAS  Article  PubMed Central  Google Scholar 

  14. 14.

    Kaur R, Bramwell VW, Kirby DJ, Perrie Y. Pegylation of DDA:TDB liposomal adjuvants reduces the vaccine depot effect and alters the Th1/Th2 immune responses. J Control Release. 2012;158(1):72–7. doi:10.1016/j.jconrel.2011.10.012.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Vertzoni M, Dressman J, Butler J, Hempenstall J, Reppas C. Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds. Eur J Pharm Biopharm. 2005;60(3):413–7. doi:10.1016/j.ejpb.2005.03.002.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Pedersen BL, Brondsted H, Lennernas H, Christensen FN, Mullertz A, Kristensen HG. Dissolution of hydrocortisone in human and simulated intestinal fluids. Pharm Res. 2000;17(2):183–9.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Brewer JM, Alexander J. The adjuvant activity of non-ionic surfactant vesicles (niosomes) on the BALB/c humoral response to bovine serum albumin. Immunology. 1992;75(4):570–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Singh M, O’Hagan D. The preparation and characterization of polymeric antigen delivery systems for oral administration. Adv Drug Deliv Rev. 1998;34(2–3):285–304. doi:10.1016/s0169-409x(98)00044-1.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Mane V, Muro S. Biodistribution and endocytosis of ICAM-1-targeting antibodies versus nanocarriers in the gastrointestinal tract in mice. Int J Nanomedicine. 2012;7:4223–37. doi:10.2147/IJN.S34105.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    O’Hagan DT. The intestinal uptake of particles and the implications for drug and antigen delivery. J Anat. 1996;189(Pt 3):477–82.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK, Gilley RM, Tice TR. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer’s patches. J Controlled Release. 1990;11(1–3):205–14. doi:10.1016/0168-3659(90)90133-e.

    CAS  Article  Google Scholar 

  22. 22.

    van der Lubben IM, Verhoef JC, van Aelst AC, Borchard G, Junginger HE. Chitosan microparticles for oral vaccination: preparation, characterization and preliminary in vivo uptake studies in murine Peyer’s patches. Biomaterials. 2001;22(7):687–94. doi:10.1016/s0142-9612(00)00231-3.

    Article  PubMed  Google Scholar 

  23. 23.

    Ebel JP. A method for quantifying particle absorption from the small intestine of the mouse. Pharm Res. 1990;7(8):848–51. doi:10.1023/a:1015964916486.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Tabata Y, Inoue Y, Ikada Y. Size effect on systemic and mucosal immune responses induced by oral administration of biodegradable microspheres. Vaccine. 1996;14(17–18):1677–85. doi:10.1016/s0264-410x(96)00149-1.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    McConnell EL, Basit AW, Murdan S. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in vivo experiments. J Pharm Pharmacol. 2008;60(1):63–70. doi:10.1211/jpp.60.1.0008.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Wolfensohn S, Lloyd M. Handbook of Laboratory Animal Management and Welfare, Third Edition. Blackwell; 2003.

  27. 27.

    Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol. 2006;6(2):148–58. doi:10.1038/nri1777.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Yeh P, Ellens H, Smith PL. Physiological considerations in the design of particulate dosage forms for oral vaccine delivery. Adv Drug Deliv Rev. 1998;34(2–3):123–33.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Hunter AC, Elsom J, Wibroe PP, Moghimi SM. Polymeric particulate technologies for oral drug delivery and targeting: a pathophysiological perspective. Nanomedicine: Nanotechnol Biol Med. 2012;8(1):S5–20. doi:10.1016/j.nano.2012.07.005.

    CAS  Article  Google Scholar 

  30. 30.

    Florence A. The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm Res. 1997;14(3):259–66. doi:10.1023/a:1012029517394.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Frey A, Giannasca KT, Weltzin R, Giannasca PJ, Reggio H, Lencer WI, et al. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med. 1996;184(3):1045–59. doi:10.1084/jem.184.3.1045.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Plapied L, Duhem N, des Rieux A, Préat V. Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci. 2011;16(Plapied L):228–37. doi:10.1016/j.cocis.2010.12.005.

    CAS  Article  Google Scholar 

  33. 33.

    Roda A, Mezzanotte L, Aldini R, Michelini E, Cevenini L. A new gastric-emptying mouse model based on in vivo non-invasive bioluminescence imaging. Neurogastroenterol Motil. 2010;22(10):1117–e288. doi:10.1111/j.1365-2982.2010.01535.x.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Marciani L, Faulks R, Wickham MS, Bush D, Pick B, Wright J, et al. Effect of intragastric acid stability of fat emulsions on gastric emptying, plasma lipid profile and postprandial satiety. Br J Nutr. 2009;101(6):919–28. doi:10.1017/S0007114508039986S0007114508039986.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Holm R, Tonsberg H, Jorgensen EB, Abedinpour P, Farsad S, Mullertz A. Influence of bile on the absorption of halofantrine from lipid-based formulations. Eur J Pharm Biopharm. 2012;81(2):281–7. doi:10.1016/j.ejpb.2012.03.005S0939-6411(12)00080-X.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Holm R, Porter CJ, Edwards GA, Mullertz A, Kristensen HG, Charman WN. Examination of oral absorption and lymphatic transport of halofantrine in a triple-cannulated canine model after administration in self-microemulsifying drug delivery systems (SMEDDS) containing structured triglycerides. Eur J Pharm Sci. 2003;20(1):91–7.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Florence AT, Sakthivel T, Toth I. Oral uptake and translocation of a polylysine dendrimer with a lipid surface. J Control Release. 2000;65(1–2):253–9. doi:10.1016/S0168-3659(99)00237-0.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

Jitinder Singh Wilkhu was funded via a BBSRC Industrial Case Award (BB/ G017948/1) and Variation Biotechnologies Inc. Sarah McNeil has no conflict of Interest. David E Anderson is the Vice President of Research at Variation Biotechnologies Inc and provided part funding for the research. Yvonne Perrie received funding from BBSRC Industrial Case Award (BB/G017948/1) and Variation Biotechnologies Inc.

Ethical statement

All institutional and national guidelines for the care and use of laboratory animals were followed. The experiments within this study comply with the current laws within the UK.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yvonne Perrie.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilkhu, J.S., McNeil, S.E., Anderson, D.E. et al. Consideration of the efficacy of non-ionic vesicles in the targeted delivery of oral vaccines. Drug Deliv. and Transl. Res. 4, 233–245 (2014). https://doi.org/10.1007/s13346-013-0174-7

Download citation

Keywords

  • Niosomes
  • Non-ionic vesicles
  • Vaccine delivery
  • Cholesterol
  • Influenza
  • Adjuvants