Skip to main content

Advertisement

Log in

Overcoming obstacles in microRNA delivery towards improved cancer therapy

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs found to govern nearly every biological process. They frequently acquire a gain or a loss of function in cancer, hence playing a causative role in the development and progression of cancer. There are major obstacles on the way for the successful delivery of miRNA, which include low cellular uptake of the RNA and endosomal escape, immunogenicity, degradation in the bloodstream, and rapid renal clearance. The delivered miRNA needs to be successfully routed to the target organ, enter the cell and reach its intracellular target in an active form. Consequently, in order to exploit the promise of RNA interference, there is an urgent need for efficient methods to deliver miRNAs. These can be divided into three main categories: complexation, encapsulation, and conjugation. In this review, we will discuss the special considerations for miRNA delivery for cancer therapy, focusing on nonviral delivery systems: lipid, polymeric, and inorganic nanocarriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tiram G, Scomparin A, Ofek P, Satchi-Fainaro R. Interfering cancer with polymeric siRNA nanocarriers. J Biomed Nanotechnol. 2013; in press.

  2. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363–6.

    Article  CAS  PubMed  Google Scholar 

  3. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  4. Ahlquist P. RNA-dependent RNA, polymerases, viruses, and RNA silencing. Science. 2002;296(5571):1270–3.

    Article  CAS  PubMed  Google Scholar 

  5. Zeng Y, Yi R, Cullen BR. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 2005;24(1):138–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development. 2005;132(21):4653–62.

    Article  CAS  PubMed  Google Scholar 

  7. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  8. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.

    Article  CAS  PubMed  Google Scholar 

  9. Weiler J, Hunziker J, Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther. 2006;13(6):496–502.

    Article  CAS  PubMed  Google Scholar 

  10. Lee YS, Kim HK, Chung S, Kim KS, Dutta A. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem. 2005;280(17):16635–41.

    Article  CAS  PubMed  Google Scholar 

  11. Esau CC. Inhibition of microRNA with antisense oligonucleotides. Methods. 2008;44(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  12. Henry JC, Azevedo-Pouly AC, Schmittgen TD. MicroRNA replacement therapy for cancer. Pharm Res. 2011;28(12):3030–42.

    Article  CAS  PubMed  Google Scholar 

  13. Ramachandran PV, Ignacimuthu S. RNA interference as a plausible anticancer therapeutic tool. Asian Pac J Cancer Prev. 2012;13(6):2445–52.

    Article  PubMed  Google Scholar 

  14. Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, et al. MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol. 2008;26(4):462–9.

    Article  CAS  PubMed  Google Scholar 

  15. Esau CC, Monia BP. Therapeutic potential for microRNAs. Adv Drug Deliv Rev. 2007;59(2–3):101–14.

    Article  CAS  PubMed  Google Scholar 

  16. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69.

    Article  CAS  PubMed  Google Scholar 

  17. Kim E, Yang J, Park J, Kim S, Kim NH, Yook JI, et al. Consecutive targetable smart nanoprobe for molecular recognition of cytoplasmic microRNA in metastatic breast cancer. ACS Nano. 2012;6(10):8525–35.

    Article  CAS  PubMed  Google Scholar 

  18. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.

    Article  CAS  PubMed  Google Scholar 

  20. He L, He X, Lowe SW, Hannon GJ. microRNAs join the p53 network--another piece in the tumour-suppression puzzle. Nat Rev Cancer. 2007;7(11):819–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Almog N, Ma L, Schwager C, Brinkmann BG, Beheshti A, Vajkoczy P, et al. Consensus micro RNAs governing the switch of dormant tumors to the fast-growing angiogenic phenotype. PLoS One. 2012;7(8):e44001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.

    Article  CAS  PubMed  Google Scholar 

  23. Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet. 2006;38(9):1060–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One. 2006;1:e116.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ferracin M, Pedriali M, Veronese A, Zagatti B, Gafa R, Magri E, et al. MicroRNA profiling for the identification of cancers with unknown primary tissue-of-origin. J Pathol. 2011;225(1):43–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6(6):590–610.

    Article  CAS  PubMed  Google Scholar 

  27. Scomparin A, Tiram G, Satchi-Fainaro R. Nanoscale-based delivery of RNAi for cancer therapy. In: Erdmann VA, Barciszewski J, editors. DNA and RNA nanotechnologies in medicine. Diagnosis and treatment of diseases. Berlin: Springer; 2013.

    Google Scholar 

  28. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303(5663):1529–31.

    Article  CAS  PubMed  Google Scholar 

  29. Robbins M, Judge A, Liang L, McClintock K, Yaworski E, MacLachlan I. 2'-O-methyl-modified RNAs act as TLR7 antagonists. Mol Ther. 2007;15(9):1663–9.

    Article  CAS  PubMed  Google Scholar 

  30. Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S. Inhibition of microRNA function by antimiR oligonucleotides. Silence. 2012;3(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lennox KA, Behlke MA. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther. 2011;18(12):1111–20.

    Article  CAS  PubMed  Google Scholar 

  32. Davis S, Lollo B, Freier S, Esau C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res. 2006;34(8):2294–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li L, Shen Y. Overcoming obstacles to develop effective and safe siRNA therapeutics. Expert Opin Biol Ther. 2009;9(5):609–19.

    Article  CAS  PubMed  Google Scholar 

  34. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2(3):214–21.

    Article  CAS  PubMed  Google Scholar 

  35. Semple SC, Harasym TO, Clow KA, Ansell SM, Klimuk SK, Hope MJ. Immunogenicity and rapid blood clearance of liposomes containing polyethylene glycol-lipid conjugates and nucleic Acid. J Pharmacol Exp Ther. 2005;312(3):1020–6.

    Article  CAS  PubMed  Google Scholar 

  36. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–92.

    CAS  PubMed  Google Scholar 

  37. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Markovsky E, Baabur-Cohen H, Eldar-Boock A, Omer L, Tiram G, Ferber S, et al. Administration, distribution, metabolism and elimination of polymer therapeutics. J Control Release. 2012;161(2):446–60.

    Article  CAS  PubMed  Google Scholar 

  39. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9(5):1909–15.

    Article  CAS  PubMed  Google Scholar 

  40. Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006;66(13):6732–40.

    Article  CAS  PubMed  Google Scholar 

  41. Brasnjevic I, Steinbusch HW, Schmitz C, Martinez-Martinez P. Delivery of peptide and protein drugs over the blood–brain barrier. Prog Neurobiol. 2009;87(4):212–51.

    Article  CAS  PubMed  Google Scholar 

  42. Cryan SA. Carrier-based strategies for targeting protein and peptide drugs to the lungs. AAPS J. 2005;7(1):E20–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. 1995;92(16):7297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dominska M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci. 2010;123(Pt 8):1183–9.

    Article  CAS  PubMed  Google Scholar 

  45. Huang HW, Chen FY, Lee MT. Molecular mechanism of peptide-induced pores in membranes. Phys Rev Lett. 2004;92(19):198304.

    Article  PubMed  Google Scholar 

  46. Hafez IM, Maurer N, Cullis PR. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 2001;8(15):1188–96.

    Article  CAS  PubMed  Google Scholar 

  47. Olejniczak M, Galka P, Krzyzosiak WJ. Sequence-non-specific effects of RNA interference triggers and microRNA regulators. Nucleic Acids Res. 2010;38(1):1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zelphati O, Szoka Jr FC. Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci U S A. 1996;93(21):11493–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Doh KO, Yeo Y. Application of polysaccharides for surface modification of nanomedicines. Ther Deliv. 2012;3(12):1447–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Peer D, Florentin A, Margalit R. Hyaluronan is a key component in cryoprotection and formulation of targeted unilamellar liposomes. Biochim Biophys Acta. 2003;1612(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  52. Wu Y, Crawford M, Mao Y, Lee RJ, Davis IC, Elton TS, et al. Therapeutic delivery of MicroRNA-29b by cationic lipoplexes for lung cancer. Mol Ther Nucleic Acids. 2013;2:e84.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wu Y, Crawford M, Yu B, Mao Y, Nana-Sinkam SP, Lee LJ. MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Mol Pharm. 2011;8(4):1381–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pramanik D, Campbell NR, Karikari C, Chivukula R, Kent OA, Mendell JT, et al. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol Cancer Ther. 2011;10(8):1470–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010;17(2):193–9.

    Article  CAS  PubMed  Google Scholar 

  56. Zenz T, Mohr J, Eldering E, Kater AP, Buhler A, Kienle D, et al. miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood. 2009;113(16):3801–8.

    Article  CAS  PubMed  Google Scholar 

  57. ClinicalTrials.gov. http://clinicaltrials.gov/ct2/show/NCT01829971?term=mirna+therapeutics&rank=1. 2013.

  58. Bader AG. miR-34—a microRNA replacement therapy is headed to the clinic. Front Genet. 2012;3:120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, Scheppke L, et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med. 2010;16(8):909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang M, Zhou X, Wang B, Yung BC, Lee LJ, Ghoshal K et al. Lactosylated gramicidin-based lipid nanoparticles (Lac-GLN) for targeted delivery of anti-miR-155 to hepatocellular carcinoma. J Control Release. 2013;168:251–61.

    Google Scholar 

  61. Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 2010;18(9):1650–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu XQ, Song WJ, Sun TM, Zhang PZ, Wang J. Targeted delivery of antisense inhibitor of miRNA for antiangiogenesis therapy using cRGD-functionalized nanoparticles. Mol Pharm. 2011;8(1):250–9.

    Article  CAS  PubMed  Google Scholar 

  63. Scientific B. http://www.biooscientific.com/Default.aspx. 2013.

  64. Craig VJ, Tzankov A, Flori M, Schmid CA, Bader AG, Muller A. Systemic microRNA-34a delivery induces apoptosis and abrogates growth of diffuse large B-cell lymphoma in vivo. Leukemia. 2012;26(11):2421–4.

    Article  CAS  PubMed  Google Scholar 

  65. Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70(14):5923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther. 2011;19(6):1116–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roush S, Slack FJ. The let-7 family of microRNAs. Trends Cell Biol. 2008;18(10):505–16.

    Article  CAS  PubMed  Google Scholar 

  69. Rodl W, Schaffert D, Wagner E, Ogris M. Synthesis of polyethylenimine-based nanocarriers for systemic tumor targeting of nucleic acids. Methods Mol Biol. 2013;948:105–20.

    PubMed  Google Scholar 

  70. Calarco A, Bosetti M, Margarucci S, Fusaro L, Nicoli E, Petillo O, et al. The genotoxicity of PEI-based nanoparticles is reduced by acetylation of polyethylenimine amines in human primary cells. Toxicol Lett. 2013;218(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  71. Chiou GY, Cherng JY, Hsu HS, Wang ML, Tsai CM, Lu KH, et al. Cationic polyurethanes-short branch PEI-mediated delivery of Mir145 inhibited epithelial-mesenchymal transdifferentiation and cancer stem-like properties and in lung adenocarcinoma. J Control Release. 2012;159(2):240–50.

    Article  CAS  PubMed  Google Scholar 

  72. Pun SH, Bellocq NC, Liu A, Jensen G, Machemer T, Quijano E, et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug Chem. 2004;15(4):831–40.

    Article  CAS  PubMed  Google Scholar 

  73. Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR, et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science. 2010;328(5981):1031–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hu QL, Jiang QY, Jin X, Shen J, Wang K, Li YB, et al. Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials. 2013;34(9):2265–76.

    Article  CAS  PubMed  Google Scholar 

  75. Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005;57(15):2215–37.

    Article  CAS  PubMed  Google Scholar 

  76. Ren Y, Kang CS, Yuan XB, Zhou X, Xu P, Han L, et al. Co-delivery of as-miR-21 and 5-FU by poly(amidoamine) dendrimer attenuates human glioma cell growth in vitro. J Biomater Sci Polym Ed. 2010;21(3):303–14.

    Article  CAS  PubMed  Google Scholar 

  77. Papasani MR, Wang G, Hill RA. Gold nanoparticles: the importance of physiological principles to devise strategies for targeted drug delivery. Nanomedicine. 2012;8(6):804–14.

    Article  CAS  PubMed  Google Scholar 

  78. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005;21(23):10644–54.

    Article  CAS  PubMed  Google Scholar 

  79. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.

    Article  CAS  PubMed  Google Scholar 

  80. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS, Mirkin CA. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science. 2006;312(5776):1027–30.

    Article  CAS  PubMed  Google Scholar 

  81. Ghosh R, Singh LC, Shohet JM, Gunaratne PH. A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials. 2013;34(3):807–16.

    Article  CAS  PubMed  Google Scholar 

  82. Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, et al. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A. 2012;109(26):E1695–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cheng CJ, Saltzman WM. Polymer nanoparticle-mediated delivery of microRNA inhibition and alternative splicing. Mol Pharm. 2012;9(5):1481–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Barbe C, Bartlett J, Kong LG, Finnie K, Lin HQ, Larkin M, et al. Silica particles: a novel drug-delivery system. Adv Mater. 2004;16(21):1959–66.

    Article  CAS  Google Scholar 

  85. Tivnan A, Orr WS, Gubala V, Nooney R, Williams DE, McDonagh C, et al. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One. 2012;7(5):e38129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim JH, Yeom JH, Ko JJ, Han MS, Lee K, Na SY, et al. Effective delivery of anti-miRNA DNA oligonucleotides by functionalized gold nanoparticles. J Biotechnol. 2011;155(3):287–92.

    Article  CAS  PubMed  Google Scholar 

  87. Kim JK, Choi KJ, Lee M, Jo MH, Kim S. Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials. 2012;33(1):207–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr Noga Yerushalmi for critical appraisal of the manuscript. The Satchi-Fainaro research laboratory is partially supported by The Association for International Cancer Research (AICR), German-Israel Foundation (GIF), The Marguerite Stolz Research Fund for outstanding faculty, Rimonim Consortium and the MAGNET Program of the Office of the Chief Scientist of the Israel Ministry of Industry, Trade & Labor, THE ISRAEL SCIENCE FOUNDATION (grant no. 1309/10), the US–Israel Binational Science Foundation (grant no. 2007347), Swiss Bridge Award, and by grants from the Israeli National Nanotechnology Initiative (INNI), Focal Technology Area (FTA) program: Nanomedicine for Personalized Theranostics, and by The Leona M. and Harry B. Helmsley Nanotechnology Research Fund.

Conflict of interest statement

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronit Satchi-Fainaro.

Additional information

D. Ben-Shushan, E. Markovsky, and H. Gibori contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Shushan, D., Markovsky, E., Gibori, H. et al. Overcoming obstacles in microRNA delivery towards improved cancer therapy. Drug Deliv. and Transl. Res. 4, 38–49 (2014). https://doi.org/10.1007/s13346-013-0160-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-013-0160-0

Keywords

Navigation