Advertisement

Drug Delivery and Translational Research

, Volume 5, Issue 2, pp 146–159 | Cite as

The incorporation of bFGF mediated by heparin into PCL/gelatin composite fiber meshes for guided bone regeneration

  • Ji-hye Lee
  • Young Jun Lee
  • Hyeong-jin Cho
  • Dong Wan Kim
  • Heungsoo ShinEmail author
Research Article

Abstract

The concept of guided bone regeneration facilitated by barrier membranes has been widely considered to achieve enhanced bone healing in maxillofacial surgery. However, the currently available membranes are limited in their active regulation of cellular activities. In this study, we fabricated polycaprolactone/gelatin composite electrospun nanofibers incorporated with basic fibroblast growth factor (bFGF) to direct bone regeneration. The fibrous morphology was maintained after the crosslinking and subsequent conjugation of heparin. Release of bFGF from electrospun nanofibers without heparin resulted in a spontaneous burst, while the heparin-mediated release of bFGF decreased the burst release in 24 h. The bFGF released from the nanofibers enhanced the proliferation and migration of human mesenchymal stem cells as well as the tubule formation of human umbilical cord blood cells. The subcutaneous implantation of fibers incorporated with bFGF mobilized a large number of cells positive for CD31 and smooth muscle alpha actin within 2 weeks. The effect of the nanofibers incorporated with bFGF on bone regeneration was evaluated on a calvarial critical size defect model. As compared to the mice that received fibers without bFGF, which presented minimal new bone formation (5.36 ± 3.4 % of the defect), those that received implants of heparinized nanofibers incorporated with 50 or 100 ng/mL bFGF significantly enhanced new bone formation (10.82 ± 2.2 and 17.55 ± 6.08 %). Taken together, our results suggest that the electrospun nanofibers incorporating bFGF have the potential to be used as an advanced membrane that actively enhances bone regeneration.

Keywords

Electrospun Basic fibroblast growth factor Mesenchymal stem cells Guided bone regeneration Growth factor delivery 

Notes

Acknowledgments

This research was supported by the National Research Foundation of Korea grant funded by the Ministry of Education, Science and Technology (20120005338).

References

  1. 1.
    Hermann JS, Buser D. Guided bone regeneration for dental implants. Curr Opin Periodontol. 1996;3:168–77.PubMedGoogle Scholar
  2. 2.
    Gerbi ME, Pinheiro AL, Marzola C, Limeira Junior Fde A, Ramalho LM, Ponzi EA, et al. Assessment of bone repair associated with the use of organic bovine bone and membrane irradiated at 830 nm. Photomed Laser Surg. 2005;23(4):382–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Gentile P, Chiono V, Tonda-Turo C, Ferreira AM, Ciardelli G. Polymeric membranes for guided bone regeneration. Biotechnol J. 2011;6(10):1187–97.CrossRefPubMedGoogle Scholar
  4. 4.
    Simion M, Dahlin C, Blair K, Schenk RK. Effect of different microstructures of e-PTFE membranes on bone regeneration and soft tissue response: a histologic study in canine mandible. Clin Oral Implants Res. 1999;10(2):73–84.CrossRefPubMedGoogle Scholar
  5. 5.
    Behring J, Junker R, Walboomers XF, Chessnut B, Jansen JA. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontol Soc Nippon Dent Univ. 2008;96(1):1–11.CrossRefGoogle Scholar
  6. 6.
    Behr B, Sorkin M, Lehnhardt M, Renda A, Longaker MT, Quarto N. A comparative analysis of the osteogenic effects of BMP-2, FGF-2, and VEGFA in a calvarial defect model. Tissue Eng Part A. 2012;18(9–10):1079–86.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hernandez A, Reyes R, Sanchez E, Rodriguez-Evora M, Delgado A, Evora C. In vivo osteogenic response to different ratios of BMP-2 and VEGF released from a biodegradable porous system. J Biomed Mater Res Part A. 2012;100(9):2382–91.Google Scholar
  8. 8.
    Zhang W, Wang X, Wang S, Zhao J, Xu L, Zhu C, et al. The use of injectable sonication-induced silk hydrogel for VEGF(165) and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials. 2011;32(35):9415–24. doi: 10.1016/j.biomaterials.2011.08.047.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Giraux JL, Matou S, Bros A, Tapon-Bretaudiere J, Letourneur D, Fischer AM. Modulation of human endothelial cell proliferation and migration by fucoidan and heparin. Eur J Cell Biol. 1998;77(4):352–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res Part A. 2003;65(4):489–97. doi: 10.1002/jbm.a.10542.CrossRefGoogle Scholar
  11. 11.
    Lind M, Deleuran B, Thestrup-Pedersen K, Soballe K, Eriksen EF, Bunger C. Chemotaxis of human osteoblasts. APMIS Acta Pathol Microbiol Immunol Scand. 1995;103(2):140–6.CrossRefGoogle Scholar
  12. 12.
    Hossain WA, Morest DK. Fibroblast growth factors (FGF-1, FGF-2) promote migration and neurite growth of mouse cochlear ganglion cells in vitro: immunohistochemistry and antibody perturbation. J Neurosci Res. 2000;62(1):40–55.CrossRefPubMedGoogle Scholar
  13. 13.
    Murphy M, Drago J, Bartlett PF. Fibroblast growth factor stimulates the proliferation and differentiation of neural precursor cells in vitro. J Neurosci Res. 1990;25(4):463–75.CrossRefPubMedGoogle Scholar
  14. 14.
    Ledoux D, Gannoun-Zaki L, Barritault D. Interactions of FGFs with target cells. Prog Growth Factor Res. 1992;4(2):107–20.CrossRefPubMedGoogle Scholar
  15. 15.
    Gibran NS, Isik FF, Heimbach DM, Gordon D. Basic fibroblast growth factor in the early human burn wound. J Surg Res. 1994;56(3):226–34.CrossRefPubMedGoogle Scholar
  16. 16.
    Mayahara H, Ito T, Nagai H, Miyajima H, Tsukuda R, Taketomi S, et al. In vivo stimulation of endosteal bone formation by basic fibroblast growth factor in rats. Growth Factors. 1993;9(1):73–80.CrossRefPubMedGoogle Scholar
  17. 17.
    Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L. Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci U S A. 1986;83(19):7297–301.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nakamura T, Hanada K, Tamura M, Shibanushi T, Nigi H, Tagawa M, et al. Stimulation of endosteal bone formation by systemic injections of recombinant basic fibroblast growth factor in rats. Endocrinology. 1995;136(3):1276–84.PubMedGoogle Scholar
  19. 19.
    Nakasa T, Ishida O, Sunagawa T, Nakamae A, Yokota K, Adachi N, et al. Feasibility of prefabricated vascularized bone graft using the combination of FGF-2 and vascular bundle implantation within hydroxyapatite for osteointegration. J Biomed Mater Res Part A. 2008;85(4):1090–5. doi: 10.1002/jbm.a.31673.CrossRefGoogle Scholar
  20. 20.
    Bikfalvi A, Klein S, Pintucci G, Rifkin DB. Biological roles of fibroblast growth factor-2. Endocr Rev. 1997;18(1):26–45.PubMedGoogle Scholar
  21. 21.
    Tabata Y, Yamada K, Miyamoto S, Nagata I, Kikuchi H, Aoyama I, et al. Bone regeneration by basic fibroblast growth factor complexed with biodegradable hydrogels. Biomaterials. 1998;19(7–9):807–15.CrossRefPubMedGoogle Scholar
  22. 22.
    Nakahara T, Nakamura T, Kobayashi E, Inoue M, Shigeno K, Tabata Y, et al. Novel approach to regeneration of periodontal tissues based on in situ tissue engineering: effects of controlled release of basic fibroblast growth factor from a sandwich membrane. Tissue Eng. 2003;9(1):153–62. doi: 10.1089/107632703762687636.CrossRefPubMedGoogle Scholar
  23. 23.
    Oh SA, Lee HY, Lee JH, Kim TH, Jang JH, Kim HW, et al. Collagen three-dimensional hydrogel matrix carrying basic fibroblast growth factor for the cultivation of mesenchymal stem cells and osteogenic differentiation. Tissue Eng Part A. 2012;18(9–10):1087–100. doi: 10.1089/ten.TEA.2011.0360.CrossRefPubMedGoogle Scholar
  24. 24.
    Jun I, Jeong S, Shin H. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers. Biomaterials. 2009;30(11):2038–47.CrossRefPubMedGoogle Scholar
  25. 25.
    Obata A, Hotta T, Wakita T, Ota Y, Kasuga T. Electrospun microfiber meshes of silicon-doped vaterite/poly(lactic acid) hybrid for guided bone regeneration. Acta Biomater. 2010;6(4):1248–57. doi: 10.1016/j.actbio.2009.11.013.CrossRefPubMedGoogle Scholar
  26. 26.
    Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–21.CrossRefPubMedGoogle Scholar
  27. 27.
    Casper CL, Yamaguchi N, Kiick KL, Rabolt JF. Functionalizing electrospun fibers with biologically relevant macromolecules. Biomacromolecules. 2005;6(4):1998–2007.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Montero RB, Vial X, Nguyen DT, Farhand S, Reardon M, Pham SM, et al. bFGF-containing electrospun gelatin scaffolds with controlled nano-architectural features for directed angiogenesis. Acta Biomater. 2012;8(5):1778–91.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sahoo S, Ang LT, Goh JC, Toh SL. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res Part A. 2010;93(4):1539–50. doi: 10.1002/jbm.a.32645.Google Scholar
  30. 30.
    Kim MS, Bhang SH, Yang HS, Rim NG, Jun I, Kim SI, et al. Development of functional fibrous matrices for the controlled release of basic fibroblast growth factor to improve therapeutic angiogenesis. Tissue Eng Part A. 2010;16(10):2999–3010.CrossRefPubMedGoogle Scholar
  31. 31.
    Kim MS, Shin YM, Lee JH, Kim SI, Nam YS, Shin CS, et al. Release kinetics and in vitro bioactivity of basic fibroblast growth factor: effect of the thickness of fibrous matrices. Macromol Biosci. 2011;11(1):122–30.CrossRefPubMedGoogle Scholar
  32. 32.
    Sasisekharan R, Ernst S, Venkataraman G. On the regulation of fibroblast growth factor activity by heparin-like glycosaminoglycans. Angiogenesis. 1997;1(1):45–54.CrossRefPubMedGoogle Scholar
  33. 33.
    Ishibe T, Goto T, Kodama T, Miyazaki T, Kobayashi S, Takahashi T. Bone formation on apatite-coated titanium with incorporated BMP-2/heparin in vivo. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(6):867–75.CrossRefPubMedGoogle Scholar
  34. 34.
    Jeong SI, Jeon O, Krebs MD, Hill MC, Alsberg E. Biodegradable photo-crosslinked alginate nanofibre scaffolds with tuneable physical properties, cell adhesivity and growth factor release. Eur Cell Mater. 2012;24:331–43.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Liang HC, Chang Y, Hsu CK, Lee MH, Sung HW. Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern. Biomaterials. 2004;25(17):3541–52.CrossRefPubMedGoogle Scholar
  36. 36.
    Chen YS, Chang JY, Cheng CY, Tsai FJ, Yao CH, Liu BS. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials. 2005;26(18):3911–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Yao C-H, Liu B-S, Hsu S-H, Chen Y-S, Tsai C-C. Biocompatibility and biodegradation of a bone composite containing tricalcium phosphate and genipin crosslinked gelatin. J Biomed Mater Res Part A. 2004;69A(4):709–17. doi: 10.1002/jbm.a.30045.CrossRefGoogle Scholar
  38. 38.
    Kim MS, Jun I, Shin YM, Jang W, Kim SI, Shin H. The development of genipin-crosslinked poly(caprolactone) (PCL)/gelatin nanofibers for tissue engineering applications. Macromol Biosci. 2010;10(1):91–100.CrossRefPubMedGoogle Scholar
  39. 39.
    Yoon JJ, Chung HJ, Park TG. Photo-crosslinkable and biodegradable pluronic/heparin hydrogels for local and sustained delivery of angiogenic growth factor. J Biomed Mater Res Part A. 2007;83(3):597–605. doi: 10.1002/jbm.a.31271.CrossRefGoogle Scholar
  40. 40.
    Shen H, Hu X, Yang F, Bei J, Wang S. Cell affinity for bFGF immobilized heparin-containing poly(lactide-co-glycolide) scaffolds. Biomaterials. 2011;32(13):3404–12. doi: 10.1016/j.biomaterials.2011.01.037.CrossRefPubMedGoogle Scholar
  41. 41.
    Tang D-W, Yu S-H, Ho Y-C, Mi F-L, Kuo P-L, Sung H-W. Heparinized chitosan/poly(γ-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin. Biomaterials. 2010;31(35):9320–32. doi: 10.1016/j.biomaterials.2010.08.058.CrossRefPubMedGoogle Scholar
  42. 42.
    Song G, Ju Y, Soyama H. Growth and proliferation of bone marrow mesenchymal stem cells affected by type I collagen, fibronectin and bFGF. Mater Sci Eng C. 2008;28(8):1467–71. doi: 10.1016/j.msec.2008.04.005.CrossRefGoogle Scholar
  43. 43.
    Tengood JE, Ridenour R, Brodsky R, Russell AJ, Little SR. Sequential delivery of basic fibroblast growth factor and platelet-derived growth factor for angiogenesis. Tissue Eng Part A. 2011;17(9–10):1181–9. doi: 10.1089/ten.TEA.2010.0551.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Langer HF, Stellos K, Steingen C, Froihofer A, Schonberger T, Kramer B, et al. Platelet derived bFGF mediates vascular integrative mechanisms of mesenchymal stem cells in vitro. J Mol Cell Cardiol. 2009;47(2):315–25.CrossRefPubMedGoogle Scholar
  45. 45.
    Chinen N, Tanihara M, Nakagawa M, Shinozaki K, Yamamoto E, Mizushima Y, et al. Action of microparticles of heparin and alginate crosslinked gel when used as injectable artificial matrices to stabilize basic fibroblast growth factor and induce angiogenesis by controlling its release. J Biomed Mater Res Part A. 2003;67(1):61–8.CrossRefGoogle Scholar
  46. 46.
    Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res. 1986;205:299–308.PubMedGoogle Scholar
  47. 47.
    Hong KS, Kim EC, Bang SH, Chung CH, Lee YI, Hyun JK, et al. Bone regeneration by bioactive hybrid membrane containing FGF2 within rat calvarium. J Biomed Mater Res Part A. 2010;94(4):1187–94.Google Scholar

Copyright information

© Controlled Release Society 2013

Authors and Affiliations

  • Ji-hye Lee
    • 1
  • Young Jun Lee
    • 1
  • Hyeong-jin Cho
    • 1
  • Dong Wan Kim
    • 1
  • Heungsoo Shin
    • 1
    • 2
    Email author
  1. 1.Department of BioengineeringHanyang UniversitySeoulSouth Korea
  2. 2.Institute for Bioengineering and Biopharmaceutical Research and Institute of Aging SocietyHanyang UniversitySeoulSouth Korea

Personalised recommendations