Skip to main content

Advertisement

Log in

Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: perspectives and challenges for use in lung diseases

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Theranostic nanoparticles with both therapeutic and imaging abilities have the promise to revolutionize diagnosis, therapy, and prognosis. Early and accurate detection along with swift treatment are the most important steps in the successful treatment of any disease. Over the last decade, a variety of nanotechnology-based platforms have been created in the hope of improving the treatment and diagnosis of a wide variety of diseases. However, significant hurdles still remain before theranostic nanoparticles can bring clinical solutions to the fight against chronic respiratory diseases. Some fundamental issues such as long-term toxicity, a precise understanding of the accumulation, degradation and clearance of these particles, and the correlation between basic physicochemical properties of these nanoparticles and their in vivo behavior have to be fully understood before they can be used clinically. To date, very little theranostic nanoparticle research has focused on the treatment and diagnosis of chronic respiratory illnesses. Nanomedicine approaches incorporating these theranostic nanoparticles could potentially be translated into clinical advances to improve diagnosis and treatment of these chronic respiratory diseases and enhance quality of life for the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Organization WH. Prevention and control of chronic respiratory diseases in low and middle-income African countries: A Preliminary Report 2002.

  2. Organization WH. Action plan of the Global Alliance against Chronic Respiratory diseases, 2008–20132008.

  3. Swai H, Semete B, Kalombo L, Chelule P, Kisich K, Sievers B. Nanomedicine for respiratory diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(3):255–63. doi:10.1002/wnan.33.

    Article  PubMed  CAS  Google Scholar 

  4. Ranjita S, Loaye AS, Khalil M. Present status of nanoparticle research for treatment of tuberculosis. J Pharm Pharm Sci. 2011;14(1):100–16.

    Google Scholar 

  5. Crotty S, Cameron C, Andino R. Ribavirin’s antiviral mechanism of action: lethal mutagenesis? J Mol Med (Berl). 2002;80(2):86–95. doi:10.1007/s00109-001-0308-0.

    Article  CAS  Google Scholar 

  6. Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater. 2011;23(36):H217–47. doi:10.1002/adma.201102313.

    Article  PubMed  CAS  Google Scholar 

  7. Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-)clinical progress. J Control Release. 2012;161(2):175–87. doi:10.1016/j.jconrel.2011.09.063.

    Article  PubMed  CAS  Google Scholar 

  8. Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304. doi:10.1016/j.addr.2009.11.002.

    Article  PubMed  CAS  Google Scholar 

  9. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20. doi:10.1021/nn900002m.

    Article  PubMed  CAS  Google Scholar 

  10. Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30(11):592–9. doi:10.1016/j.tips.2009.08.004.

    Article  PubMed  CAS  Google Scholar 

  11. Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjugate Chemistry. 2011;22(10):1879–903. doi:10.1021/bc200151q.

    Article  PubMed  CAS  Google Scholar 

  12. Godin B, Tasciotti E, Liu X, Serda RE, Ferrari M. Multistage nanovectors: from concept to novel imaging contrast agents and therapeutics. Acc Chem Res. 2011;44(10):979–89. doi:10.1021/ar200077p.

    Article  PubMed  CAS  Google Scholar 

  13. Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res. 2009;42(8):1097–107. doi:10.1021/ar9000026.

    Article  PubMed  CAS  Google Scholar 

  14. Cabral H, Nishiyama N, Kataoka K. Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc Chem Res. 2011;44(10):999–1008. doi:10.1021/ar200094a.

    Article  PubMed  CAS  Google Scholar 

  15. Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol. 2006;24(10):1211–7. doi:10.1038/nbt1006-1211.

    Article  PubMed  CAS  Google Scholar 

  16. Roy I, Vij N. Nanodelivery in airway diseases: challenges and therapeutic applications. Nanomedicine. 2010;6(2):237–44. doi:10.1016/j.nano.2009.07.001.

    Article  PubMed  CAS  Google Scholar 

  17. Vij N. Nano-based theranostics for chronic obstructive lung diseases: challenges and therapeutic potential. Expert Opin Drug Deliv. 2011;8(9):1105–9. doi:10.1517/17425247.2011.597381.

    Article  PubMed  CAS  Google Scholar 

  18. Pison U, Welte T, Giersig M, Groneberg DA. Nanomedicine for respiratory diseases. Eur J Pharmacol. 2006;533(1–3):341–50. doi:10.1016/j.ejphar.2005.12.068.

    Article  PubMed  CAS  Google Scholar 

  19. Mastrobattista E, Hennink WE, Schiffelers RM. Delivery of nucleic acids. Pharm Res. 2007;24(8):1561–3. doi:10.1007/s11095-007-9349-6.

    Article  PubMed  CAS  Google Scholar 

  20. Xu J, Ganesh S, Amiji M. Non-condensing polymeric nanoparticles for targeted gene and siRNA delivery. Int J Pharm. 2012;427(1):21–34. doi:10.1016/j.ijpharm.2011.05.036.

    Article  PubMed  CAS  Google Scholar 

  21. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 2008;29(24–25):3477–96. doi:10.1016/j.biomaterials.2008.04.036.

    Article  PubMed  CAS  Google Scholar 

  22. Kumar M, Behera AK, Lockey RF, Zhang J, Bhullar G, De La Cruz CP, et al. Intranasal gene transfer by chitosan-DNA nanospheres protects BALB/c mice against acute respiratory syncytial virus infection. Hum Gene Ther. 2002;13(12):1415–25. doi:10.1089/10430340260185058.

    Article  PubMed  CAS  Google Scholar 

  23. Vij N, Min T, Marasigan R, Belcher CN, Mazur S, Ding H, et al. Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis. J Nanobiotechnology. 2010;8:22. doi:10.1186/1477-3155-8-22.

    Article  PubMed  Google Scholar 

  24. Rosen JE, Yoffe S, Meerasa A, Verma M, Gu FX. Nanotechnology and diagnostic imaging: new advances in contrast agent technology. Journal of Nanomedicine and Nanotechnology. 2011. doi:10.4172/2157-7439.1000115.

  25. Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem. 2011;399(1):3–27. doi:10.1007/s00216-010-4207-5.

    Article  PubMed  CAS  Google Scholar 

  26. Cho EC, Glaus C, Chen J, Welch MJ, Xia Y. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends in molecular medicine. 2010;16(12):561–73. doi:10.1016/j.molmed.2010.09.004.

    Article  PubMed  CAS  Google Scholar 

  27. Aswathy RG, Yoshida Y, Maekawa T, Kumar DS. Near-infrared quantum dots for deep tissue imaging. Anal Bioanal Chem. 2010;397(4):1417–35. doi:10.1007/s00216-010-3643-6.

    Article  PubMed  CAS  Google Scholar 

  28. Huang HC, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Contr Release. 2011;155(3):344–57. doi:10.1016/j.jconrel.2011.06.004.

    Article  CAS  Google Scholar 

  29. Cormode DP, Jarzyna PA, Mulder WJ, Fayad ZA. Modified natural nanoparticles as contrast agents for medical imaging. Adv Drug Deliv Rev. 2010;62(3):329–38. doi:10.1016/j.addr.2009.11.005.

    Article  PubMed  CAS  Google Scholar 

  30. Ordidge KL, Duffy BA, Wells JA, Kalber TL, Janes SM, Lythgoe MF. Imaging the paediatric lung: what does nanotechnology have to offer? Paediatr Respir Rev. 2012;13(2):84–8. doi:10.1016/j.prrv.2011.07.001.

    Article  PubMed  CAS  Google Scholar 

  31. Wang C, Ravi S, Martinez GV, Chinnasamy V, Raulji P, Howell M et al. Dual-purpose magnetic micelles for MRI and gene delivery. J Contr Release. 2012. doi:10.1016/j.jconrel.2012.04.030.

  32. Branca RT, Cleveland ZI, Fubara B, Kumar CS, Maronpot RR, Leuschner C, et al. Molecular MRI for sensitive and specific detection of lung metastases. Proc Natl Acad Sci U S A. 2010;107(8):3693–7. doi:10.1073/pnas.1000386107.

    Article  PubMed  CAS  Google Scholar 

  33. Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G. Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials. 2013;34(2):470–80. doi:10.1016/j.biomaterials.2012.09.054.

    Article  PubMed  CAS  Google Scholar 

  34. Cho S, Hwang O, Lee I, Lee G, Yoo D, Khang G et al. Chemiluminescent and antioxidant micelles as theranostic agents for hydrogen peroxide associated-inflammatory diseases. Adv Funct Mater. 2012; 22(19):4038–43. doi:10.1002/adfm.201200773.

    Google Scholar 

  35. Marianecci C, Marzio LD, Rinaldi F, Carafa M, Alhaique F. Pulmonary delivery: innovative approaches and perspectives. Journal of Biomaterials and Nanobiotechnology 2011; 2:567–75. doi:10.4236/jbnb.2011.225068.

    Google Scholar 

  36. Yang W, Peters JI, Williams 3rd RO. Inhaled nanoparticles—a current review. Int J Pharm. 2008;356(1–2):239–47. doi:10.1016/j.ijpharm.2008.02.011.

    Article  PubMed  CAS  Google Scholar 

  37. Zarogoulidis P, Chatzaki E, Porpodis K, Domvri K, Hohenforst-Schmidt W, Goldberg EP, et al. Inhaled chemotherapy in lung cancer: future concept of nanomedicine. International Journal of Nanomedicine. 2012;7:1551–72. doi:10.2147/IJN.S29997.

    Article  PubMed  CAS  Google Scholar 

  38. Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71. doi:10.1016/j.addr.2008.11.002.

    Article  PubMed  CAS  Google Scholar 

  39. Van der Schans CP. Bronchial mucus transport. Respir Care 2007;52(9):1150–6; discussion 6–8.

    Google Scholar 

  40. Goerke J. Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta. 1998;1408(2–3):79–89.

    PubMed  CAS  Google Scholar 

  41. Sanders N, Rudolph C, Braeckmans K, De Smedt SC, Demeester J. Extracellular barriers in respiratory gene therapy. Adv Drug Deliv Rev. 2009;61(2):115–27. doi:10.1016/j.addr.2008.09.011.

    Article  PubMed  CAS  Google Scholar 

  42. Nayak A, Dodagatta-Marri E, Tsolaki AG, Kishore U. An insight into the diverse roles of surfactant proteins, SP-A and SP-D in innate and adaptive immunity. Front Immunol. 2012;3:131. doi:10.3389/fimmu.2012.00131.

    Article  PubMed  Google Scholar 

  43. Ruge CA, Schaefer UF, Herrmann J, Kirch J, Canadas O, Echaide M et al. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles. PloS One 2012; 7(7):e40775. doi:10.1371/journal.pone.0040775.

  44. Owens 3rd DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102. doi:10.1016/j.ijpharm.2005.10.010.

    Article  PubMed  CAS  Google Scholar 

  45. Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm. 2008;5(4):487–95. doi:10.1021/mp800032f.

    Article  PubMed  CAS  Google Scholar 

  46. Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond). 2008;3(5):703–17. doi:10.2217/17435889.3.5.703.

    Article  CAS  Google Scholar 

  47. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5(3):161–71. doi:10.1038/nrc1566.

    Article  PubMed  CAS  Google Scholar 

  48. Chen Z, Ma L, Liu Y, Chen C. Applications of functionalized fullerenes in tumor theranostics. Theranostics. 2012;2(3):238–50. doi:10.7150/thno.3509.

    Article  PubMed  CAS  Google Scholar 

  49. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul. 2001;41:189–207.

    Article  CAS  Google Scholar 

  50. Soldati T, Schliwa M. Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Biol. 2006;7(12):897–908. doi:10.1038/nrm2060.

    Article  PubMed  CAS  Google Scholar 

  51. Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng. 2006;8:343–75. doi:10.1146/annurev.bioeng.8.061505.095735.

    Article  PubMed  CAS  Google Scholar 

  52. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064–110. doi:10.1021/cr068445e.

    Article  PubMed  CAS  Google Scholar 

  53. McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev. 2008;60(11):1241–51. doi:10.1016/j.addr.2008.03.014.

    Article  PubMed  CAS  Google Scholar 

  54. Fernandez-Fernandez A, Manchanda R, McGoron AJ. Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol. 2011;165(7–8):1628–51. doi:10.1007/s12010-011-9383-z.

    Article  PubMed  CAS  Google Scholar 

  55. Qi L, Gao X. Emerging application of quantum dots for drug delivery and therapy. Expet Opin Drug Deliv. 2008;5(3):263–7. doi:10.1517/17425247.5.3.263.

    Article  CAS  Google Scholar 

  56. Cai W, Hsu AR, Li ZB, Chen X. Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res Lett. 2007;2(6):265–81. doi:10.1007/s11671-007-9061-9.

    Article  PubMed  CAS  Google Scholar 

  57. Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol. 2005;16(1):63–72. doi:10.1016/j.copbio.2004.11.003.

    Article  PubMed  CAS  Google Scholar 

  58. Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012;2(1):3–44. doi:10.7150/thno.3463.

    Article  PubMed  CAS  Google Scholar 

  59. Kumar R, Kulkarni A, Nagesha DK, Sridhar S. In vitro evaluation of theranostic polymeric micelles for imaging and drug delivery in cancer. Theranostics. 2012;2(7):714–22. doi:10.7150/thno.3927.

    Article  PubMed  CAS  Google Scholar 

  60. Ho YP, Leong KW. Quantum dot-based theranostics. Nanoscale. 2010;2(1):60–8. doi:10.1039/b9nr00178f.

    Article  PubMed  CAS  Google Scholar 

  61. Al-Jamal WT, Al-Jamal KT, Bomans PH, Frederik PM, Kostarelos K. Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small. 2008;4(9):1406–15. doi:10.1002/smll.200701043.

    Article  PubMed  CAS  Google Scholar 

  62. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007;7(10):3065–70. doi:10.1021/nl071546n.

    Article  PubMed  CAS  Google Scholar 

  63. Kim D, Jon S. Gold nanoparticles in image-guided cancer therapy. Inorganica Chimica Acta. 2012. doi:10.1016/j.ica.2012.07.001.

  64. Moon GD, Choi SW, Cai X, Li W, Cho EC, Jeong U, et al. A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J Am Chem Soc. 2011;133(13):4762–5. doi:10.1021/ja200894u.

    Article  PubMed  CAS  Google Scholar 

  65. Xia Y, Li W, Cobley CM, Chen J, Xia X, Zhang Q, et al. Gold nanocages: from synthesis to theranostic applications. Accounts Chem Res. 2011;44(10):914–24. doi:10.1021/ar200061q.

    Article  CAS  Google Scholar 

  66. Xiao Y, Hong H, Matson VZ, Javadi A, Xu W, Yang Y, et al. Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics. 2012;2(8):757–68. doi:10.7150/thno.4756.

    Article  PubMed  CAS  Google Scholar 

  67. Wang Y, Liu Y, Luehmann H, Xia X, Brown P, Jarreau C, et al. Evaluating the pharmacokinetics and in vivo cancer targeting capability of au nanocages by positron emission tomography imaging. ACS Nano. 2012;6(7):5880–8. doi:10.1021/nn300464r.

    Article  PubMed  CAS  Google Scholar 

  68. Kim KS, Park S-J, Lee M-Y, Lim K-G, Hahn SK. Gold half-shell coated hyaluronic acid-doxorubicin conjugate micelles for theranostic applications. Macromol Res 2012; 20(3): 277–82.

    Google Scholar 

  69. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Accounts Chem Res. 2008;41(12):1721–30. doi:10.1021/ar800035u.

    Article  CAS  Google Scholar 

  70. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl. 2010;49(19):3280–94. doi:10.1002/anie.200904359.

    Article  PubMed  CAS  Google Scholar 

  71. Park J, Estrada A, Sharp K, Sang K, Schwartz JA, Smith DK, et al. Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. Opt Express. 2008;16(3):1590–9.

    Article  PubMed  CAS  Google Scholar 

  72. Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, et al. Gold nanocages as photothermal transducers for cancer treatment. Small. 2010;6(7):811–7. doi:10.1002/smll.200902216.

    Article  PubMed  CAS  Google Scholar 

  73. Ramos J, Rege K. Transgene delivery using poly(amino ether)-gold nanorod assemblies. Biotechnol Bioeng. 2012;109(5):1336–46. doi:10.1002/bit.24408.

    Article  PubMed  CAS  Google Scholar 

  74. Li W, Brown PK, Wang LV, Xia Y. Gold nanocages as contrast agents for photoacoustic imaging. Contrast Media and Molecular Imaging. 2011;6(5):370–7. doi:10.1002/cmmi.439.

    Article  PubMed  CAS  Google Scholar 

  75. Terreno E, Uggeri F, Aime S. Image guided therapy: the advent of theranostic agents. J Contr Release. 2012;161(2):328–37. doi:10.1016/j.jconrel.2012.05.028.

    Article  CAS  Google Scholar 

  76. Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4(1):26–49. doi:10.1002/smll.200700595.

    Article  PubMed  CAS  Google Scholar 

  77. Liu Z, Liang XJ. Nano-carbons as theranostics. Theranostics. 2012;2(3):235–7. doi:10.7150/thno.4156.

    Article  PubMed  CAS  Google Scholar 

  78. Liu Z, Li X, Tabakman SM, Jiang K, Fan S, Dai H. Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. J Am Chem Soc. 2008;130(41):13540–1. doi:10.1021/ja806242t.

    Article  PubMed  CAS  Google Scholar 

  79. Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol. 2009;4(11):773–80. doi:10.1038/nnano.2009.294.

    Article  PubMed  CAS  Google Scholar 

  80. Bhirde AA, Liu G, Jin A, Iglesias-Bartolome R, Sousa AA, Leapman RD et al. Combining portable Raman probes with nanotubes for theranostic applications. Theranostics 2011; 1:310–21.

    Google Scholar 

  81. Bonner JC. Carbon nanotubes as delivery systems for respiratory disease: do the dangers outweigh the potential benefits? Expet Rev Respir Med. 2011;5(6):779–87. doi:10.1586/ers.11.72.

    Article  CAS  Google Scholar 

  82. Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Accounts Chem Res. 2008;41(1):60–8. doi:10.1021/ar700089b.

    Article  CAS  Google Scholar 

  83. Heller DA, Baik S, Eurell TE, Strano MS. Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater 2005; 17(23):2793–9. doi:10.1002/adma.200501343.

    Google Scholar 

  84. Liu Z, Yang K, Lee S-T. Single-walled carbon nanotubes in biomedical imaging. J Mater Chem 2011; 21: 586–598. doi:10.1039/c0jm02020f.

    Google Scholar 

  85. Zerda ADL, Zavaleta C, Keren S, Vaithilingam S, Bodaoati S, Liu Z et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nature Nanotechnology 2008; 3: 557–62. doi:10.1038/nnano.2008.231.

    Google Scholar 

  86. Wang H, Wang J, Deng X, Sun H, Shi Z, Gu Z et al. Biodistribution of carbon single-wall carbon nanotubes in mice. Journal of Nanoscience and Nanotechnology. 2004. doi:10.1166/jnn.2004.146

  87. Choi JH, Nguyen FT, Barone PW, Heller DA, Moll AE, Patel D, et al. Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano letters. 2007;7(4):861–7. doi:10.1021/nl062306v.

    Article  PubMed  CAS  Google Scholar 

  88. Boncel S, Muller KH, Skepper JN, Walczak KZ, Koziol KK. Tunable chemistry and morphology of multi-wall carbon nanotubes as a route to non-toxic, theranostic systems. Biomaterials. 2011;32(30):7677–86. doi:10.1016/j.biomaterials.2011.06.055.

    Article  PubMed  CAS  Google Scholar 

  89. Donaldson K, Murphy F, Schinwald A, Duffin R, Poland CA. Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design. Nanomedicine. 2011;6(1):143–56. doi:10.2217/nnm.10.139.

    Article  PubMed  CAS  Google Scholar 

  90. Wick P, Clift MJ, Rosslein M, Rothen-Rutishauser B. A brief summary of carbon nanotubes science and technology: a health and safety perspective. ChemSusChem. 2011;4(7):905–11. doi:10.1002/cssc.201100161.

    Article  PubMed  CAS  Google Scholar 

  91. Hendee WR, Morgan CJ. Magnetic resonance imaging. Part I—physical principles. West J Med. 1984;141(4):491–500.

    PubMed  CAS  Google Scholar 

  92. Ling Y, Wei K, Luo Y, Gao X, Zhong S. Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials. 2011;32(29):7139–50. doi:10.1016/j.biomaterials.2011.05.089.

    Article  PubMed  CAS  Google Scholar 

  93. Rastogi R, Gulati N, Kotnala RK, Sharma U, Jayasundar R, Koul V. Evaluation of folate conjugated pegylated thermosensitive magnetic nanocomposites for tumor imaging and therapy. Colloids Surf B Biointerfaces. 2011;82(1):160–7. doi:10.1016/j.colsurfb.2010.08.037.

    Article  PubMed  CAS  Google Scholar 

  94. Na HB, Lee JH, An K, Park YI, Park M, Lee IS, et al. Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed Engl. 2007;46(28):5397–401. doi:10.1002/anie.200604775.

    Article  PubMed  CAS  Google Scholar 

  95. Le Duc G, Miladi I, Alric C, Mowat P, Brauer-Krisch E, Bouchet A, et al. Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano. 2011;5(12):9566–74. doi:10.1021/nn202797h.

    Article  PubMed  Google Scholar 

  96. Prince MR, Zhang HL, Prowda JC, Grossman ME, Silvers DN. Nephrogenic systemic fibrosis and its impact on abdominal imaging. Radiographics. 2009;29(6):1565–74. doi:10.1148/rg.296095517.

    Article  PubMed  Google Scholar 

  97. Sieber MA, Steger-Hartmann T, Lengsfeld P, Pietsch H. Gadolinium-based contrast agents and NSF: evidence from animal experience. J Magn Reson Imaging. 2009;30(6):1268–76. doi:10.1002/jmri.21971.

    Article  PubMed  Google Scholar 

  98. Pan D, Caruthers SD, Senpan A, Schmieder AH, Wickline SA, Lanza GM. Revisiting an old friend: manganese-based MRI contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010. doi:10.1002/wnan.116.

  99. Pan D, Schmieder AH, Wickline SA, Lanza GM. Manganese-based MRI contrast agents: past, present and future. Tetrahedron. 2011;67(44):8431–44. doi:10.1016/j.tet.2011.07.076.

    Article  PubMed  CAS  Google Scholar 

  100. Choi JY, Lee SH, Na HB, An K, Hyeon T, Seo TS. In vitro cytotoxicity screening of water-dispersible metal oxide nanoparticles in human cell lines. Bioprocess Biosyst Eng. 2010;33(1):21–30. doi:10.1007/s00449-009-0354-5.

    Article  PubMed  CAS  Google Scholar 

  101. Nabel GJ, Nabel EG, Yang ZY, Fox BA, Plautz GE, Gao X, et al. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci U S A. 1993;90(23):11307–11.

    Article  PubMed  CAS  Google Scholar 

  102. Nabel EG, Yang Z, Muller D, Chang AE, Gao X, Huang L, et al. Safety and toxicity of catheter gene delivery to the pulmonary vasculature in a patient with metastatic melanoma. Hum Gene Ther. 1994;5(9):1089–94. doi:10.1089/hum.1994.5.9-1089.

    Article  PubMed  CAS  Google Scholar 

  103. Kong WH, Bae KH, Jo SD, Kim JS, Park TG. Cationic lipid-coated gold nanoparticles as efficient and non-cytotoxic intracellular siRNA delivery vehicles. Pharm Res. 2012;29(2):362–74. doi:10.1007/s11095-011-0554-y.

    Article  PubMed  CAS  Google Scholar 

  104. Maitani Y, Igarashi S, Sato M, Hattori Y. Cationic liposome (DC-Chol/DOPE = 1:2) and a modified ethanol injection method to prepare liposomes, increased gene expression. Int J Pharm. 2007;342(1–2):33–9. doi:10.1016/j.ijpharm.2007.04.035.

    Article  PubMed  CAS  Google Scholar 

  105. Zhang Y, Li H, Sun J, Gao J, Liu W, Li B, et al. DC-Chol/DOPE cationic liposomes: a comparative study of the influence factors on plasmid pDNA and siRNA gene delivery. Int J Pharm. 2010;390(2):198–207. doi:10.1016/j.ijpharm.2010.01.035.

    Article  PubMed  CAS  Google Scholar 

  106. Yallapu MM, Foy SP, Jain TK, Labhasetwar V. PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharm Res. 2010;27(11):2283–95. doi:10.1007/s11095-010-0260-1.

    Article  PubMed  CAS  Google Scholar 

  107. Musacchio T, Laquintana V, Latrofa A, Trapani G, Torchilin VP. PEG-PE micelles loaded with paclitaxel and surface-modified by a PBR-ligand: synergistic anticancer effect. Mol Pharm. 2009;6(2):468–79.

    Article  PubMed  CAS  Google Scholar 

  108. Howell M, Wang C, Sowndharya R, Dixit S, Mohapatra S. Manganese oxide lipid nanoparticles (MLNs) for use as a T1 MRI contrast agent and gene delivery vehicle. J Cont Rel. 2013.

  109. Chen Y, Chen H, Zhang S, Chen F, Sun S, He Q, et al. Structure–property relationships in manganese oxide–mesoporous silica nanoparticles used for T1-weighted MRI and simultaneous anti-cancer drug delivery. Biomaterials. 2012;33(7):2388–98. doi:10.1016/j.biomaterials.2011.11.086.

    Article  PubMed  CAS  Google Scholar 

  110. Card JW, Zeldin DC, Bonner JC, Nestmann ER. Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol. 2008;295(3):L400–11. doi:10.1152/ajplung.00041.2008.

    Article  PubMed  CAS  Google Scholar 

  111. Alford R, Ogawa M, Choyke PL, Kobayashi H. Molecular probes for the in vivo imaging of cancer. Mol Biosyst. 2009;5(11):1279–91. doi:10.1039/b911307j.

    Article  PubMed  CAS  Google Scholar 

  112. Marik J, Tartis MS, Zhang H, Fung JY, Kheirolomoom A, Sutcliffe JL, et al. Long-circulating liposomes radiolabeled with [18 F]fluorodipalmitin ([18 F]FDP). Nucl Med Biol. 2007;34(2):165–71. doi:10.1016/j.nucmedbio.2006.12.004.

    Article  PubMed  CAS  Google Scholar 

  113. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants 5R01CA152005 from the National Institutes of Health to SM and SSM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howell, M., Wang, C., Mahmoud, A. et al. Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: perspectives and challenges for use in lung diseases. Drug Deliv. and Transl. Res. 3, 352–363 (2013). https://doi.org/10.1007/s13346-013-0132-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-013-0132-4

Keywords

Navigation