Drug Delivery and Translational Research

, Volume 3, Issue 4, pp 352–363 | Cite as

Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: perspectives and challenges for use in lung diseases

  • M. Howell
  • C. Wang
  • A. Mahmoud
  • G. Hellermann
  • S. S. Mohapatra
  • S. Mohapatra
Review Article


Theranostic nanoparticles with both therapeutic and imaging abilities have the promise to revolutionize diagnosis, therapy, and prognosis. Early and accurate detection along with swift treatment are the most important steps in the successful treatment of any disease. Over the last decade, a variety of nanotechnology-based platforms have been created in the hope of improving the treatment and diagnosis of a wide variety of diseases. However, significant hurdles still remain before theranostic nanoparticles can bring clinical solutions to the fight against chronic respiratory diseases. Some fundamental issues such as long-term toxicity, a precise understanding of the accumulation, degradation and clearance of these particles, and the correlation between basic physicochemical properties of these nanoparticles and their in vivo behavior have to be fully understood before they can be used clinically. To date, very little theranostic nanoparticle research has focused on the treatment and diagnosis of chronic respiratory illnesses. Nanomedicine approaches incorporating these theranostic nanoparticles could potentially be translated into clinical advances to improve diagnosis and treatment of these chronic respiratory diseases and enhance quality of life for the patients.


Chronic respiratory diseases Theranostics Nanoparticles 


  1. 1.
    Organization WH. Prevention and control of chronic respiratory diseases in low and middle-income African countries: A Preliminary Report 2002.Google Scholar
  2. 2.
    Organization WH. Action plan of the Global Alliance against Chronic Respiratory diseases, 2008–20132008.Google Scholar
  3. 3.
    Swai H, Semete B, Kalombo L, Chelule P, Kisich K, Sievers B. Nanomedicine for respiratory diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(3):255–63. doi:10.1002/wnan.33.PubMedCrossRefGoogle Scholar
  4. 4.
    Ranjita S, Loaye AS, Khalil M. Present status of nanoparticle research for treatment of tuberculosis. J Pharm Pharm Sci. 2011;14(1):100–16.Google Scholar
  5. 5.
    Crotty S, Cameron C, Andino R. Ribavirin’s antiviral mechanism of action: lethal mutagenesis? J Mol Med (Berl). 2002;80(2):86–95. doi:10.1007/s00109-001-0308-0.CrossRefGoogle Scholar
  6. 6.
    Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater. 2011;23(36):H217–47. doi:10.1002/adma.201102313.PubMedCrossRefGoogle Scholar
  7. 7.
    Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-)clinical progress. J Control Release. 2012;161(2):175–87. doi:10.1016/j.jconrel.2011.09.063.PubMedCrossRefGoogle Scholar
  8. 8.
    Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304. doi:10.1016/j.addr.2009.11.002.PubMedCrossRefGoogle Scholar
  9. 9.
    Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20. doi:10.1021/nn900002m.PubMedCrossRefGoogle Scholar
  10. 10.
    Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30(11):592–9. doi:10.1016/j.tips.2009.08.004.PubMedCrossRefGoogle Scholar
  11. 11.
    Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjugate Chemistry. 2011;22(10):1879–903. doi:10.1021/bc200151q.PubMedCrossRefGoogle Scholar
  12. 12.
    Godin B, Tasciotti E, Liu X, Serda RE, Ferrari M. Multistage nanovectors: from concept to novel imaging contrast agents and therapeutics. Acc Chem Res. 2011;44(10):979–89. doi:10.1021/ar200077p.PubMedCrossRefGoogle Scholar
  13. 13.
    Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res. 2009;42(8):1097–107. doi:10.1021/ar9000026.PubMedCrossRefGoogle Scholar
  14. 14.
    Cabral H, Nishiyama N, Kataoka K. Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc Chem Res. 2011;44(10):999–1008. doi:10.1021/ar200094a.PubMedCrossRefGoogle Scholar
  15. 15.
    Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol. 2006;24(10):1211–7. doi:10.1038/nbt1006-1211.PubMedCrossRefGoogle Scholar
  16. 16.
    Roy I, Vij N. Nanodelivery in airway diseases: challenges and therapeutic applications. Nanomedicine. 2010;6(2):237–44. doi:10.1016/j.nano.2009.07.001.PubMedCrossRefGoogle Scholar
  17. 17.
    Vij N. Nano-based theranostics for chronic obstructive lung diseases: challenges and therapeutic potential. Expert Opin Drug Deliv. 2011;8(9):1105–9. doi:10.1517/17425247.2011.597381.PubMedCrossRefGoogle Scholar
  18. 18.
    Pison U, Welte T, Giersig M, Groneberg DA. Nanomedicine for respiratory diseases. Eur J Pharmacol. 2006;533(1–3):341–50. doi:10.1016/j.ejphar.2005.12.068.PubMedCrossRefGoogle Scholar
  19. 19.
    Mastrobattista E, Hennink WE, Schiffelers RM. Delivery of nucleic acids. Pharm Res. 2007;24(8):1561–3. doi:10.1007/s11095-007-9349-6.PubMedCrossRefGoogle Scholar
  20. 20.
    Xu J, Ganesh S, Amiji M. Non-condensing polymeric nanoparticles for targeted gene and siRNA delivery. Int J Pharm. 2012;427(1):21–34. doi:10.1016/j.ijpharm.2011.05.036.PubMedCrossRefGoogle Scholar
  21. 21.
    Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 2008;29(24–25):3477–96. doi:10.1016/j.biomaterials.2008.04.036.PubMedCrossRefGoogle Scholar
  22. 22.
    Kumar M, Behera AK, Lockey RF, Zhang J, Bhullar G, De La Cruz CP, et al. Intranasal gene transfer by chitosan-DNA nanospheres protects BALB/c mice against acute respiratory syncytial virus infection. Hum Gene Ther. 2002;13(12):1415–25. doi:10.1089/10430340260185058.PubMedCrossRefGoogle Scholar
  23. 23.
    Vij N, Min T, Marasigan R, Belcher CN, Mazur S, Ding H, et al. Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis. J Nanobiotechnology. 2010;8:22. doi:10.1186/1477-3155-8-22.PubMedCrossRefGoogle Scholar
  24. 24.
    Rosen JE, Yoffe S, Meerasa A, Verma M, Gu FX. Nanotechnology and diagnostic imaging: new advances in contrast agent technology. Journal of Nanomedicine and Nanotechnology. 2011. doi:10.4172/2157-7439.1000115.
  25. 25.
    Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem. 2011;399(1):3–27. doi:10.1007/s00216-010-4207-5.PubMedCrossRefGoogle Scholar
  26. 26.
    Cho EC, Glaus C, Chen J, Welch MJ, Xia Y. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends in molecular medicine. 2010;16(12):561–73. doi:10.1016/j.molmed.2010.09.004.PubMedCrossRefGoogle Scholar
  27. 27.
    Aswathy RG, Yoshida Y, Maekawa T, Kumar DS. Near-infrared quantum dots for deep tissue imaging. Anal Bioanal Chem. 2010;397(4):1417–35. doi:10.1007/s00216-010-3643-6.PubMedCrossRefGoogle Scholar
  28. 28.
    Huang HC, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Contr Release. 2011;155(3):344–57. doi:10.1016/j.jconrel.2011.06.004.CrossRefGoogle Scholar
  29. 29.
    Cormode DP, Jarzyna PA, Mulder WJ, Fayad ZA. Modified natural nanoparticles as contrast agents for medical imaging. Adv Drug Deliv Rev. 2010;62(3):329–38. doi:10.1016/j.addr.2009.11.005.PubMedCrossRefGoogle Scholar
  30. 30.
    Ordidge KL, Duffy BA, Wells JA, Kalber TL, Janes SM, Lythgoe MF. Imaging the paediatric lung: what does nanotechnology have to offer? Paediatr Respir Rev. 2012;13(2):84–8. doi:10.1016/j.prrv.2011.07.001.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang C, Ravi S, Martinez GV, Chinnasamy V, Raulji P, Howell M et al. Dual-purpose magnetic micelles for MRI and gene delivery. J Contr Release. 2012. doi:10.1016/j.jconrel.2012.04.030.
  32. 32.
    Branca RT, Cleveland ZI, Fubara B, Kumar CS, Maronpot RR, Leuschner C, et al. Molecular MRI for sensitive and specific detection of lung metastases. Proc Natl Acad Sci U S A. 2010;107(8):3693–7. doi:10.1073/pnas.1000386107.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G. Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials. 2013;34(2):470–80. doi:10.1016/j.biomaterials.2012.09.054.PubMedCrossRefGoogle Scholar
  34. 34.
    Cho S, Hwang O, Lee I, Lee G, Yoo D, Khang G et al. Chemiluminescent and antioxidant micelles as theranostic agents for hydrogen peroxide associated-inflammatory diseases. Adv Funct Mater. 2012; 22(19):4038–43. doi:10.1002/adfm.201200773.Google Scholar
  35. 35.
    Marianecci C, Marzio LD, Rinaldi F, Carafa M, Alhaique F. Pulmonary delivery: innovative approaches and perspectives. Journal of Biomaterials and Nanobiotechnology 2011; 2:567–75. doi:10.4236/jbnb.2011.225068.Google Scholar
  36. 36.
    Yang W, Peters JI, Williams 3rd RO. Inhaled nanoparticles—a current review. Int J Pharm. 2008;356(1–2):239–47. doi:10.1016/j.ijpharm.2008.02.011.PubMedCrossRefGoogle Scholar
  37. 37.
    Zarogoulidis P, Chatzaki E, Porpodis K, Domvri K, Hohenforst-Schmidt W, Goldberg EP, et al. Inhaled chemotherapy in lung cancer: future concept of nanomedicine. International Journal of Nanomedicine. 2012;7:1551–72. doi:10.2147/IJN.S29997.PubMedCrossRefGoogle Scholar
  38. 38.
    Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71. doi:10.1016/j.addr.2008.11.002.PubMedCrossRefGoogle Scholar
  39. 39.
    Van der Schans CP. Bronchial mucus transport. Respir Care 2007;52(9):1150–6; discussion 6–8.Google Scholar
  40. 40.
    Goerke J. Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta. 1998;1408(2–3):79–89.PubMedGoogle Scholar
  41. 41.
    Sanders N, Rudolph C, Braeckmans K, De Smedt SC, Demeester J. Extracellular barriers in respiratory gene therapy. Adv Drug Deliv Rev. 2009;61(2):115–27. doi:10.1016/j.addr.2008.09.011.PubMedCrossRefGoogle Scholar
  42. 42.
    Nayak A, Dodagatta-Marri E, Tsolaki AG, Kishore U. An insight into the diverse roles of surfactant proteins, SP-A and SP-D in innate and adaptive immunity. Front Immunol. 2012;3:131. doi:10.3389/fimmu.2012.00131.PubMedCrossRefGoogle Scholar
  43. 43.
    Ruge CA, Schaefer UF, Herrmann J, Kirch J, Canadas O, Echaide M et al. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles. PloS One 2012; 7(7):e40775. doi:10.1371/journal.pone.0040775.
  44. 44.
    Owens 3rd DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102. doi:10.1016/j.ijpharm.2005.10.010.PubMedCrossRefGoogle Scholar
  45. 45.
    Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm. 2008;5(4):487–95. doi:10.1021/mp800032f.PubMedCrossRefGoogle Scholar
  46. 46.
    Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond). 2008;3(5):703–17. doi:10.2217/17435889.3.5.703.CrossRefGoogle Scholar
  47. 47.
    Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5(3):161–71. doi:10.1038/nrc1566.PubMedCrossRefGoogle Scholar
  48. 48.
    Chen Z, Ma L, Liu Y, Chen C. Applications of functionalized fullerenes in tumor theranostics. Theranostics. 2012;2(3):238–50. doi:10.7150/thno.3509.PubMedCrossRefGoogle Scholar
  49. 49.
    Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul. 2001;41:189–207.CrossRefGoogle Scholar
  50. 50.
    Soldati T, Schliwa M. Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Biol. 2006;7(12):897–908. doi:10.1038/nrm2060.PubMedCrossRefGoogle Scholar
  51. 51.
    Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng. 2006;8:343–75. doi:10.1146/annurev.bioeng.8.061505.095735.PubMedCrossRefGoogle Scholar
  52. 52.
    Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064–110. doi:10.1021/cr068445e.PubMedCrossRefGoogle Scholar
  53. 53.
    McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev. 2008;60(11):1241–51. doi:10.1016/j.addr.2008.03.014.PubMedCrossRefGoogle Scholar
  54. 54.
    Fernandez-Fernandez A, Manchanda R, McGoron AJ. Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol. 2011;165(7–8):1628–51. doi:10.1007/s12010-011-9383-z.PubMedCrossRefGoogle Scholar
  55. 55.
    Qi L, Gao X. Emerging application of quantum dots for drug delivery and therapy. Expet Opin Drug Deliv. 2008;5(3):263–7. doi:10.1517/17425247.5.3.263.CrossRefGoogle Scholar
  56. 56.
    Cai W, Hsu AR, Li ZB, Chen X. Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res Lett. 2007;2(6):265–81. doi:10.1007/s11671-007-9061-9.PubMedCrossRefGoogle Scholar
  57. 57.
    Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol. 2005;16(1):63–72. doi:10.1016/j.copbio.2004.11.003.PubMedCrossRefGoogle Scholar
  58. 58.
    Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012;2(1):3–44. doi:10.7150/thno.3463.PubMedCrossRefGoogle Scholar
  59. 59.
    Kumar R, Kulkarni A, Nagesha DK, Sridhar S. In vitro evaluation of theranostic polymeric micelles for imaging and drug delivery in cancer. Theranostics. 2012;2(7):714–22. doi:10.7150/thno.3927.PubMedCrossRefGoogle Scholar
  60. 60.
    Ho YP, Leong KW. Quantum dot-based theranostics. Nanoscale. 2010;2(1):60–8. doi:10.1039/b9nr00178f.PubMedCrossRefGoogle Scholar
  61. 61.
    Al-Jamal WT, Al-Jamal KT, Bomans PH, Frederik PM, Kostarelos K. Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small. 2008;4(9):1406–15. doi:10.1002/smll.200701043.PubMedCrossRefGoogle Scholar
  62. 62.
    Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007;7(10):3065–70. doi:10.1021/nl071546n.PubMedCrossRefGoogle Scholar
  63. 63.
    Kim D, Jon S. Gold nanoparticles in image-guided cancer therapy. Inorganica Chimica Acta. 2012. doi:10.1016/j.ica.2012.07.001.
  64. 64.
    Moon GD, Choi SW, Cai X, Li W, Cho EC, Jeong U, et al. A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J Am Chem Soc. 2011;133(13):4762–5. doi:10.1021/ja200894u.PubMedCrossRefGoogle Scholar
  65. 65.
    Xia Y, Li W, Cobley CM, Chen J, Xia X, Zhang Q, et al. Gold nanocages: from synthesis to theranostic applications. Accounts Chem Res. 2011;44(10):914–24. doi:10.1021/ar200061q.CrossRefGoogle Scholar
  66. 66.
    Xiao Y, Hong H, Matson VZ, Javadi A, Xu W, Yang Y, et al. Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics. 2012;2(8):757–68. doi:10.7150/thno.4756.PubMedCrossRefGoogle Scholar
  67. 67.
    Wang Y, Liu Y, Luehmann H, Xia X, Brown P, Jarreau C, et al. Evaluating the pharmacokinetics and in vivo cancer targeting capability of au nanocages by positron emission tomography imaging. ACS Nano. 2012;6(7):5880–8. doi:10.1021/nn300464r.PubMedCrossRefGoogle Scholar
  68. 68.
    Kim KS, Park S-J, Lee M-Y, Lim K-G, Hahn SK. Gold half-shell coated hyaluronic acid-doxorubicin conjugate micelles for theranostic applications. Macromol Res 2012; 20(3): 277–82.Google Scholar
  69. 69.
    Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Accounts Chem Res. 2008;41(12):1721–30. doi:10.1021/ar800035u.CrossRefGoogle Scholar
  70. 70.
    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl. 2010;49(19):3280–94. doi:10.1002/anie.200904359.PubMedCrossRefGoogle Scholar
  71. 71.
    Park J, Estrada A, Sharp K, Sang K, Schwartz JA, Smith DK, et al. Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. Opt Express. 2008;16(3):1590–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, et al. Gold nanocages as photothermal transducers for cancer treatment. Small. 2010;6(7):811–7. doi:10.1002/smll.200902216.PubMedCrossRefGoogle Scholar
  73. 73.
    Ramos J, Rege K. Transgene delivery using poly(amino ether)-gold nanorod assemblies. Biotechnol Bioeng. 2012;109(5):1336–46. doi:10.1002/bit.24408.PubMedCrossRefGoogle Scholar
  74. 74.
    Li W, Brown PK, Wang LV, Xia Y. Gold nanocages as contrast agents for photoacoustic imaging. Contrast Media and Molecular Imaging. 2011;6(5):370–7. doi:10.1002/cmmi.439.PubMedCrossRefGoogle Scholar
  75. 75.
    Terreno E, Uggeri F, Aime S. Image guided therapy: the advent of theranostic agents. J Contr Release. 2012;161(2):328–37. doi:10.1016/j.jconrel.2012.05.028.CrossRefGoogle Scholar
  76. 76.
    Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4(1):26–49. doi:10.1002/smll.200700595.PubMedCrossRefGoogle Scholar
  77. 77.
    Liu Z, Liang XJ. Nano-carbons as theranostics. Theranostics. 2012;2(3):235–7. doi:10.7150/thno.4156.PubMedCrossRefGoogle Scholar
  78. 78.
    Liu Z, Li X, Tabakman SM, Jiang K, Fan S, Dai H. Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. J Am Chem Soc. 2008;130(41):13540–1. doi:10.1021/ja806242t.PubMedCrossRefGoogle Scholar
  79. 79.
    Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol. 2009;4(11):773–80. doi:10.1038/nnano.2009.294.PubMedCrossRefGoogle Scholar
  80. 80.
    Bhirde AA, Liu G, Jin A, Iglesias-Bartolome R, Sousa AA, Leapman RD et al. Combining portable Raman probes with nanotubes for theranostic applications. Theranostics 2011; 1:310–21.Google Scholar
  81. 81.
    Bonner JC. Carbon nanotubes as delivery systems for respiratory disease: do the dangers outweigh the potential benefits? Expet Rev Respir Med. 2011;5(6):779–87. doi:10.1586/ers.11.72.CrossRefGoogle Scholar
  82. 82.
    Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Accounts Chem Res. 2008;41(1):60–8. doi:10.1021/ar700089b.CrossRefGoogle Scholar
  83. 83.
    Heller DA, Baik S, Eurell TE, Strano MS. Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater 2005; 17(23):2793–9. doi:10.1002/adma.200501343.Google Scholar
  84. 84.
    Liu Z, Yang K, Lee S-T. Single-walled carbon nanotubes in biomedical imaging. J Mater Chem 2011; 21: 586–598. doi:10.1039/c0jm02020f.Google Scholar
  85. 85.
    Zerda ADL, Zavaleta C, Keren S, Vaithilingam S, Bodaoati S, Liu Z et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nature Nanotechnology 2008; 3: 557–62. doi:10.1038/nnano.2008.231.Google Scholar
  86. 86.
    Wang H, Wang J, Deng X, Sun H, Shi Z, Gu Z et al. Biodistribution of carbon single-wall carbon nanotubes in mice. Journal of Nanoscience and Nanotechnology. 2004. doi:10.1166/jnn.2004.146
  87. 87.
    Choi JH, Nguyen FT, Barone PW, Heller DA, Moll AE, Patel D, et al. Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano letters. 2007;7(4):861–7. doi:10.1021/nl062306v.PubMedCrossRefGoogle Scholar
  88. 88.
    Boncel S, Muller KH, Skepper JN, Walczak KZ, Koziol KK. Tunable chemistry and morphology of multi-wall carbon nanotubes as a route to non-toxic, theranostic systems. Biomaterials. 2011;32(30):7677–86. doi:10.1016/j.biomaterials.2011.06.055.PubMedCrossRefGoogle Scholar
  89. 89.
    Donaldson K, Murphy F, Schinwald A, Duffin R, Poland CA. Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design. Nanomedicine. 2011;6(1):143–56. doi:10.2217/nnm.10.139.PubMedCrossRefGoogle Scholar
  90. 90.
    Wick P, Clift MJ, Rosslein M, Rothen-Rutishauser B. A brief summary of carbon nanotubes science and technology: a health and safety perspective. ChemSusChem. 2011;4(7):905–11. doi:10.1002/cssc.201100161.PubMedCrossRefGoogle Scholar
  91. 91.
    Hendee WR, Morgan CJ. Magnetic resonance imaging. Part I—physical principles. West J Med. 1984;141(4):491–500.PubMedGoogle Scholar
  92. 92.
    Ling Y, Wei K, Luo Y, Gao X, Zhong S. Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials. 2011;32(29):7139–50. doi:10.1016/j.biomaterials.2011.05.089.PubMedCrossRefGoogle Scholar
  93. 93.
    Rastogi R, Gulati N, Kotnala RK, Sharma U, Jayasundar R, Koul V. Evaluation of folate conjugated pegylated thermosensitive magnetic nanocomposites for tumor imaging and therapy. Colloids Surf B Biointerfaces. 2011;82(1):160–7. doi:10.1016/j.colsurfb.2010.08.037.PubMedCrossRefGoogle Scholar
  94. 94.
    Na HB, Lee JH, An K, Park YI, Park M, Lee IS, et al. Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed Engl. 2007;46(28):5397–401. doi:10.1002/anie.200604775.PubMedCrossRefGoogle Scholar
  95. 95.
    Le Duc G, Miladi I, Alric C, Mowat P, Brauer-Krisch E, Bouchet A, et al. Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano. 2011;5(12):9566–74. doi:10.1021/nn202797h.PubMedCrossRefGoogle Scholar
  96. 96.
    Prince MR, Zhang HL, Prowda JC, Grossman ME, Silvers DN. Nephrogenic systemic fibrosis and its impact on abdominal imaging. Radiographics. 2009;29(6):1565–74. doi:10.1148/rg.296095517.PubMedCrossRefGoogle Scholar
  97. 97.
    Sieber MA, Steger-Hartmann T, Lengsfeld P, Pietsch H. Gadolinium-based contrast agents and NSF: evidence from animal experience. J Magn Reson Imaging. 2009;30(6):1268–76. doi:10.1002/jmri.21971.PubMedCrossRefGoogle Scholar
  98. 98.
    Pan D, Caruthers SD, Senpan A, Schmieder AH, Wickline SA, Lanza GM. Revisiting an old friend: manganese-based MRI contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010. doi:10.1002/wnan.116.
  99. 99.
    Pan D, Schmieder AH, Wickline SA, Lanza GM. Manganese-based MRI contrast agents: past, present and future. Tetrahedron. 2011;67(44):8431–44. doi:10.1016/j.tet.2011.07.076.PubMedCrossRefGoogle Scholar
  100. 100.
    Choi JY, Lee SH, Na HB, An K, Hyeon T, Seo TS. In vitro cytotoxicity screening of water-dispersible metal oxide nanoparticles in human cell lines. Bioprocess Biosyst Eng. 2010;33(1):21–30. doi:10.1007/s00449-009-0354-5.PubMedCrossRefGoogle Scholar
  101. 101.
    Nabel GJ, Nabel EG, Yang ZY, Fox BA, Plautz GE, Gao X, et al. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci U S A. 1993;90(23):11307–11.PubMedCrossRefGoogle Scholar
  102. 102.
    Nabel EG, Yang Z, Muller D, Chang AE, Gao X, Huang L, et al. Safety and toxicity of catheter gene delivery to the pulmonary vasculature in a patient with metastatic melanoma. Hum Gene Ther. 1994;5(9):1089–94. doi:10.1089/hum.1994.5.9-1089.PubMedCrossRefGoogle Scholar
  103. 103.
    Kong WH, Bae KH, Jo SD, Kim JS, Park TG. Cationic lipid-coated gold nanoparticles as efficient and non-cytotoxic intracellular siRNA delivery vehicles. Pharm Res. 2012;29(2):362–74. doi:10.1007/s11095-011-0554-y.PubMedCrossRefGoogle Scholar
  104. 104.
    Maitani Y, Igarashi S, Sato M, Hattori Y. Cationic liposome (DC-Chol/DOPE = 1:2) and a modified ethanol injection method to prepare liposomes, increased gene expression. Int J Pharm. 2007;342(1–2):33–9. doi:10.1016/j.ijpharm.2007.04.035.PubMedCrossRefGoogle Scholar
  105. 105.
    Zhang Y, Li H, Sun J, Gao J, Liu W, Li B, et al. DC-Chol/DOPE cationic liposomes: a comparative study of the influence factors on plasmid pDNA and siRNA gene delivery. Int J Pharm. 2010;390(2):198–207. doi:10.1016/j.ijpharm.2010.01.035.PubMedCrossRefGoogle Scholar
  106. 106.
    Yallapu MM, Foy SP, Jain TK, Labhasetwar V. PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharm Res. 2010;27(11):2283–95. doi:10.1007/s11095-010-0260-1.PubMedCrossRefGoogle Scholar
  107. 107.
    Musacchio T, Laquintana V, Latrofa A, Trapani G, Torchilin VP. PEG-PE micelles loaded with paclitaxel and surface-modified by a PBR-ligand: synergistic anticancer effect. Mol Pharm. 2009;6(2):468–79.PubMedCrossRefGoogle Scholar
  108. 108.
    Howell M, Wang C, Sowndharya R, Dixit S, Mohapatra S. Manganese oxide lipid nanoparticles (MLNs) for use as a T1 MRI contrast agent and gene delivery vehicle. J Cont Rel. 2013.Google Scholar
  109. 109.
    Chen Y, Chen H, Zhang S, Chen F, Sun S, He Q, et al. Structure–property relationships in manganese oxide–mesoporous silica nanoparticles used for T1-weighted MRI and simultaneous anti-cancer drug delivery. Biomaterials. 2012;33(7):2388–98. doi:10.1016/j.biomaterials.2011.11.086.PubMedCrossRefGoogle Scholar
  110. 110.
    Card JW, Zeldin DC, Bonner JC, Nestmann ER. Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol. 2008;295(3):L400–11. doi:10.1152/ajplung.00041.2008.PubMedCrossRefGoogle Scholar
  111. 111.
    Alford R, Ogawa M, Choyke PL, Kobayashi H. Molecular probes for the in vivo imaging of cancer. Mol Biosyst. 2009;5(11):1279–91. doi:10.1039/b911307j.PubMedCrossRefGoogle Scholar
  112. 112.
    Marik J, Tartis MS, Zhang H, Fung JY, Kheirolomoom A, Sutcliffe JL, et al. Long-circulating liposomes radiolabeled with [18 F]fluorodipalmitin ([18 F]FDP). Nucl Med Biol. 2007;34(2):165–71. doi:10.1016/j.nucmedbio.2006.12.004.PubMedCrossRefGoogle Scholar
  113. 113.
    Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.PubMedCrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2013

Authors and Affiliations

  • M. Howell
    • 1
    • 2
  • C. Wang
    • 1
    • 2
  • A. Mahmoud
    • 2
    • 4
  • G. Hellermann
    • 2
    • 3
  • S. S. Mohapatra
    • 2
    • 3
  • S. Mohapatra
    • 1
    • 2
  1. 1.Molecular Medicine DepartmentUniversity of South FloridaTampaUSA
  2. 2.Nanomedicine Research CenterUniversity of South FloridaTampaUSA
  3. 3.Division of Translational Medicine, Department of Internal Medicine Morsani College of MedicineUniversity of South FloridaTampaUSA
  4. 4.Chemical and Biomedical Engineering Department and Molecular Medicine DepartmentUniversity of South FloridaTampaUSA

Personalised recommendations