Skip to main content

Advertisement

Log in

Optimized lysis buffer reagents for solubilization and preservation of proteins from cells and tissues

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Reagents that facilitate solubilization of cells and tissues while preserving the biological activity of their constituents play a major role in various applications including drug delivery. Such reagents are necessary for the accurate determination of cellular and tissue concentrations of proteins, peptides, and nucleic acids, and to measure therapeutic efficacy of drug delivery technologies. Surfactant-based reagents are commonly used for this purpose; however, their utility is marred either by limited ability to solubilize or tendency to denature the proteins during solubilization. Here, we report on the screening and identification of combinations of nonionic and zwitterionic surfactants that possess excellent ability to solubilize mechanically strong and elastic tissues such as skin, while preserving its protein constituents. The leading combination, comprising an equi-mass mixture of 3-(N,N-dimethyl myristyl ammonio) propanesulfonate (TPS, CAS number:14933-09-6) and polyoxyethylene(10) cetyl ether (Brij® C10, CAS number: 9004-95-9) with a total surfactant concentration 0.5 % w/v, solubilized keratinocytes and preserved the activity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) enzyme in its extracts at room temperature for 7 days. The ability of this mixture to preserve GAPDH activity far exceeded that of a commonly used reagent, Triton-X100. The same mixture also helped solubilize mouse skin to extract proteins and maintain detectable activity of GAPDH in the extract for 1 day. Several other mixtures of nonionic and zwitterionic surfactants were studied. These mixtures provide new reagents for solubilization of cells and tissues for research as well as technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hosfield D, Palan J, Hilgers M, Scheibe D, McRee DE, Stevens RC. A fully integrated protein crystallization platform for small-molecule drug discovery. J Struct Biol. 2003;142(1):207–17.

    Article  PubMed  CAS  Google Scholar 

  2. Oellerich M, Barten MJ, Armstrong VW. Biomarkers—the link between therapeutic drug monitoring and pharmacodynamics. Therapeutic Drug Monitoring. 2006;28(1):35–8.

    Article  PubMed  Google Scholar 

  3. Arrell DK, Niederlander NJ, Perez-Terzic C, Chung S, Behfar A, Terzic A. Pharmacoproteomics: advancing the efficacy and safety of regenerative therapeutics. Clin Pharmacol Ther. 2007;82(3):316–9.

    Article  PubMed  CAS  Google Scholar 

  4. Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI. A sampling of the yeast proteome. Mol Cell Biol. 1999;19(11):7357–68.

    PubMed  CAS  Google Scholar 

  5. VerBerkmoes NC, Denef VJ, Hettich RL, Banfield JF. Systems biology: functional analysis of natural microbial consortia using community proteomics. Nat Rev Microbiol. 2009;7(3):196–205.

    Article  PubMed  CAS  Google Scholar 

  6. Paulo CS, Pires das Neves R, Ferreira LS. Nanoparticles for intracellular-targeted drug delivery. Nanotechnology. 2011;22(49):494002.

    Article  PubMed  Google Scholar 

  7. Ariga K, McShane M, Lvov YM, Ji Q, Hill JP. Layer-by-layer assembly for drug delivery and related applications. Expert Opin Drug Deliv. 2011;8(5):633–44.

    Article  PubMed  CAS  Google Scholar 

  8. De Cock LJ, De Koker S, De Geest BG, Grooten J, Vervaet C, Remon JP, et al. Polymeric multilayer capsules in drug delivery. Angew Chem Int Ed Engl. 2010;49(39):6954–73.

    Article  PubMed  Google Scholar 

  9. Cosgrove BD, Alexopoulos LG, Hang TC, Hendriks BS, Sorger PK, Griffith LG, et al. Cytokine-associated drug toxicity in human hepatocytes is associated with signaling network dysregulation. Mol Biosyst. 2010;6(7):1195–206.

    Article  PubMed  CAS  Google Scholar 

  10. Fournier E, Passirani C, Montero-Menei CN, Benoit JP. Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility. Biomaterials. 2003;24(19):3311–31.

    Article  PubMed  CAS  Google Scholar 

  11. Scopes RK, Cantor CR, editors. Protein purification: principles and practice. Springer: New York; 1994. p. 22–43.

    Google Scholar 

  12. Heredia KL, Bontempo D, Ly T, Byers JT, Halstenberg S, Maynard HD. In situ preparation of protein-"smart" polymer conjugates with retention of bioactivity. J Am Chem Soc. 2005;127(48):16955–60.

    Article  PubMed  CAS  Google Scholar 

  13. Brown RB, Audet J. Current techniques for single-cell lysis. J R Soc Interface. 2008;5(supp 2):S131–8.

    Article  PubMed  CAS  Google Scholar 

  14. Paliwal S, Ogura M, Mitragotri S. One-step acquisition of functional biomolecules from tissues. Proc Natl Acad Sci U S A. 2010;107(33):14627–32.

    Article  PubMed  CAS  Google Scholar 

  15. Hwang B, Doshi N, Tsai KY, Mitragotri S. A reagent to facilitate protein recovery from cells and tissues. Drug Delivery Translational Res. 2012;2(5):297–304.

    Article  CAS  Google Scholar 

  16. Mitragotri S, Ray D, Farrell J, Tang H, Yu B, Kost J, et al. Synergistic effect of low-frequency ultrasound and sodium lauryl sulfate on transdermal transport. J Pharm Sci. 2000;89(7):892–900.

    Article  PubMed  CAS  Google Scholar 

  17. Tezel A, Sens A, Tuchscherer J, Mitragotri S. Synergistic effect of low-frequency ultrasound and surfactants on skin permeability. J Pharm Sci. 2002;91(1):91–100.

    Article  PubMed  CAS  Google Scholar 

  18. Fekete M, Wittliff JL, Schally AV. Characteristics and distribution of receptors for [D-TRP6]-luteinizing hormone-releasing hormone, somatostatin, epidermal growth factor, and sex steroids in 500 biopsy samples of human breast cancer. J Clin Lab Anal. 1989;3(3):137–47.

    Article  PubMed  CAS  Google Scholar 

  19. Anson ML. The denaturation of proteins by synthetic detergents and bile salts. J Gen Physiol. 1939;23(2):239–46.

    Article  PubMed  CAS  Google Scholar 

  20. Daskal I, Ramirez SA, Ballal RN, Spohn WH, Wu B, Busch H. Detergent lysis for isolation of intact polysomes of Nivikoff hepatoma ascites cells. Cancer Res. 1976;36(3):1026–34.

    PubMed  CAS  Google Scholar 

  21. Rabilloud T, Adessi C, Giraudel A, Lunardi J. Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 1997;18(3–4):307–16.

    Article  PubMed  CAS  Google Scholar 

  22. Cox RA. The use of guanidinium chloride in the isolation of nucleic acids. Methods Enzymology. 1968;12:120–9.

    Article  CAS  Google Scholar 

  23. O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250(10):4007–21.

    PubMed  Google Scholar 

  24. Ullrich A, Shine J, Chirgwin J, Pictet R, Tischer E, Rutter WJ, et al. Rat insulin genes: construction of plasmids containing the coding sequences. Science. 1977;196(4296):1313–9.

    Article  PubMed  CAS  Google Scholar 

  25. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–9.

    Article  PubMed  CAS  Google Scholar 

  26. Tan SC, Yiap BC. DNA, RNA, and protein extraction: the past and the present. J Biomed Biotechnol. 2009;2009:574398.

    Article  PubMed  Google Scholar 

  27. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol. 1999;17(10):1030–2.

    Article  PubMed  CAS  Google Scholar 

  28. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002;415(6868):180–3.

    Article  PubMed  CAS  Google Scholar 

  29. Ge H. UPA, a universal protein array system for quantitative detection of protein–protein, protein–DNA, protein–RNA and protein–ligand interactions. Nucleic Acids Res. 2000;28(2):e3.

    Article  PubMed  CAS  Google Scholar 

  30. Wiedenmann B, Franke WW. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell. 1985;41(3):1017–28.

    Article  PubMed  CAS  Google Scholar 

  31. Paliwal S, Hwang BH, Tsai KY, Mitragotri S. Diagnostic opportunities based on skin biomarkers. Eur J Pharm Sci. 2012. doi:10.1016/j.ejps.2012.10.009.

  32. Cho SW, Goldberg M, Son SM, Xu QB, Yang F, Mei Y, et al. Lipid-like nanoparticles for small interfering RNA delivery to endothelial cells. Adv Funct Mater. 2009;19(19):3112–8.

    Article  PubMed  CAS  Google Scholar 

  33. Kuroda S, Yamazaki M, Abe M, Sakimura K, Takayanagi H, Iwai Y. Basic leucine zipper transcription factor, ATF-like (BATF) regulates epigenetically and energetically effector CD8 T-cell differentiation via Sirt1 expression. Proc Natl Acad Sci U S A. 2011;108(36):14885–9.

    Article  PubMed  CAS  Google Scholar 

  34. Agbor TA, Cheong A, Comerford KM, Scholz CC, Bruning U, Clarke A, et al. Small ubiquitin-related modifier (SUMO)-1 promotes glycolysis in hypoxia. J Biol Chem. 2011;286(6):4718–26.

    Article  PubMed  CAS  Google Scholar 

  35. Durrieu C, Bernier-Valentin F, Rousset B. Microtubules bind glyceraldehyde 3-phosphate dehydrogenase and modulate its enzyme activity and quaternary structure. Arch Biochem Biophys. 1987;252(1):32–40.

    Article  PubMed  CAS  Google Scholar 

  36. Park J, Han D, Kim K, Kang Y, Kim Y. O-GlcNAcylation disrupts glyceraldehyde-3-phosphate dehydrogenase homo-tetramer formation and mediates its nuclear translocation. Biochim Biophys Acta. 2009;1794(2):254–62.

    Article  PubMed  CAS  Google Scholar 

  37. Blankschtein ASD. Prediction of critical micelle concentrations and synergism of binary surfactant mixtures containing zwitterionic surfactants. Langmuir. 1997;13(15):3968–81.

    Article  Google Scholar 

  38. Edwards D, Luthy R, Liu Z. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ Sci Technol. 1991;25(1):127–33.

    Article  CAS  Google Scholar 

  39. Hait SK, Moulik SP. Determination of critical micelle concentration (CMC) of nonionic surfactants by donor-acceptor interaction with iodine and correlation of CMC with hydrophile–lipophile balance and other parameters of the surfactants. J Surfactants Detergents. 2001;4(3):303–9.

    Article  CAS  Google Scholar 

  40. Wolgemuth JL, Workman RK, Manne S. Surfactant aggregates at a flat, isotropic hydrophobic surface. Langmuir. 2000;16(7):3077–81.

    Article  CAS  Google Scholar 

  41. Sigma-Aldrich, Inc. Detergents and solubilization reagents. Biofiles. 2008;3(3):30–1.

Download references

Acknowledgments

This research was sponsored by DX Biosciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Mitragotri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, B.H., Tsai, K.Y. & Mitragotri, S. Optimized lysis buffer reagents for solubilization and preservation of proteins from cells and tissues. Drug Deliv. and Transl. Res. 3, 428–436 (2013). https://doi.org/10.1007/s13346-013-0128-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-013-0128-0

Keywords

Navigation