Skip to main content

Advertisement

Log in

Electrospun collagen and its applications in regenerative medicine

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In recent years, electrospinning has increased in popularity as a processing technique for obtaining nanometer-to-micron diameter polymer fibers collected to form a nonwoven scaffold. It possesses the ability to process collagen into nanofibrous scaffolds which have been used for a number of applications, such as artificial vascular grafts and for wound repair. This paper offers a review of some of the basic yet essential aspects of producing nanofibrous scaffolds of collagen by electrospinning. A primer to collagen structure, cross-linking techniques, and electrospinning principles is provided, along with some of the many applications of these unique materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jha BS, Ayres CE, Bowman JR, Telemeco TA, Sell SA, Bowlin GL, et al. Electrospun collagen: a tissue engineering scaffold with unique functional properties in a wide variety of applications. J Nanomater. 2011. doi:10.1155/2011/348268.

    Article  Google Scholar 

  2. Friess W. Collagen—biomaterial for drug delivery. Eur J Pharm Biopharm. 1998;45:113–36.

    Article  PubMed  CAS  Google Scholar 

  3. Powell HM, Supp DM, Boyce ST. Influence of electrospun collagen on wound contraction of engineered skin substitutes. Biomaterials. 2008;29:834–43.

    Article  PubMed  CAS  Google Scholar 

  4. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3:232–8.

    Article  PubMed  CAS  Google Scholar 

  5. Huang L, Nagapudi K, Apkarian RP, Chaikof EL. Engineered collagen-PEO nanofibers and fabrics. J Biomat Sci-Polym E. 2001;12(9):979–93.

    Article  CAS  Google Scholar 

  6. Zeugolis DI, Khew ST, Yew ESY, Ekaputra AK, Tong YW, Yung LL, et al. Electro-spinning of pure collagen nano-fibres—just an expensive way to make gelatin? Biomaterials. 2008;29:2293–305.

    Article  PubMed  CAS  Google Scholar 

  7. Brodsky B, Persikov AV. Molecular structure of the collagen triple helix. Adv Protein Chem. 2005;70:301–39.

    Article  PubMed  CAS  Google Scholar 

  8. Hulmes DJS. Collagen diversity, synthesis, and assembly. In: Fratzl P, editor. Collagen structure and mechanics. New York: Springer; 2010. p. 15–47.

    Google Scholar 

  9. Ottani V, Raspanti M, Ruggeri A. Collagen structure and functional implications. Micron. 2001;32:251–60.

    Article  PubMed  CAS  Google Scholar 

  10. Ottani V, Martini D, Franchi M, Ruggeri A, Raspanti M. Hierarchical structures in fibrillar collagens. Micron. 2002;33:587–96.

    Article  PubMed  CAS  Google Scholar 

  11. Furukawa M, Takada M, Murata S, Sasayama A (1994) Process for producing regenerated collagen fiber. United States patent number: 5,344,917.

  12. Fofonoff TW, Bell E (1999) Method for spinning and processing collagen fiber. United States patent number: 5,911,942.

  13. Hirano S, Zhang M, Nakagawa M, Miyata T. Wet spun chitosan-collagen fibers, their chemical N-modifications, and blood compatibility. Biomaterials. 2000;21:997–1003.

    Article  PubMed  CAS  Google Scholar 

  14. Wess TJ. Collagen fibrillar structure and hierarchies. In: Fratzl P, editor. Collagen structure and mechanics. New York: Springer; 2010. p. 49–80.

    Google Scholar 

  15. Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Edit. 2007;46:5670–703.

    Article  CAS  Google Scholar 

  16. Andrady AL. Science and technology of polymer nanofibers. Hoboken: Wiley; 2008.

    Book  Google Scholar 

  17. Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 2006;17:R89–R106.

    Article  PubMed  CAS  Google Scholar 

  18. Stephens JS, Fahnestock SR, Farmer RS, Kiick KL, Chase DB, Rabolt JF. Effects of electrospinning and solution casting protocols on the secondary structure of a genetically engineered dragline spider silk analogue investigated via Fourier transform Raman spectroscopy. Biomacromolecules. 2005;6:1405–13.

    Article  PubMed  CAS  Google Scholar 

  19. Min BM, Lee SW, Lim JN, You Y, Lee TS, Kang PH, et al. Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer. 2004;45:7137–42.

    Article  CAS  Google Scholar 

  20. He W, Yong T, Teo WE, Ma Z, Ramakrishna S. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering. Tissue Eng. 2005;11(9/10):1574–88.

    Article  PubMed  CAS  Google Scholar 

  21. Wnek GE, Carr ME, Simpson DG, Bowlin GL. Electrospinning of nanofiber fibrinogen structures. Nano Lett. 2003;3(2):213–6.

    Article  CAS  Google Scholar 

  22. Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI. Electrospun protein fibers as matrices for tissue engineering. Biomaterials. 2005;26:5999–6008.

    Article  PubMed  CAS  Google Scholar 

  23. Park KE, Jung YS, Lee SJ, Min BM, Park WH. Biomimetic nanofibrous scaffolds: preparation and characterization of chitin/silk fibroin blend nanofibers. Biol Macromol. 2006;38:165–73.

    Article  CAS  Google Scholar 

  24. Telemeco TA, Ayres C, Bowlin GL, Wnek GE, Boland ED, Cohen N, et al. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta Biomater. 2005;1:377–85.

    Article  PubMed  CAS  Google Scholar 

  25. Dong B, Arnoult O, Smith ME, Wnek GE. Electrospinning of collagen nanofiber scaffolds from benign solvents. Macromol Rapid Commun. 2009;30:539–42.

    Article  PubMed  CAS  Google Scholar 

  26. Liu T, Teng WK, Chan BP, Chew SY. Photochemical crosslinked electrospun collagen nanofibers: synthesis, characterization and neural stem cell interactions. J Biomed Mater Res A. 2010;95A(1):276–82.

    Article  CAS  Google Scholar 

  27. Jayakrishnan A, Jameela SR. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials. 1996;17:471–84.

    Article  PubMed  CAS  Google Scholar 

  28. Bowes JH, Cater CW. The interaction of aldehydes with collagen. Biochim Biophys Acta. 1968;168:341–52.

    Article  PubMed  CAS  Google Scholar 

  29. Simmons DM, Kearney JN. Evaluation of collagen cross-linking techniques for the stabilization of tissue matrices. Biotechnol Appl Biochem. 1993;17:23–9.

    PubMed  CAS  Google Scholar 

  30. Olde Damink LHH, Dijkstra PJ, van Luyn MJA, van Wachem PB, Nieuwenhuis P, Feijen J. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials. 1996;17:765–73.

    Article  PubMed  CAS  Google Scholar 

  31. Koob TJ. Collagen fixation. In: Wnek GE, Bowlin GL, editors. Encyclopedia of Biomaterials and Biomedical Engineering. New York: Informa Healthcare USA, Inc; 2008. p. 639–51.

    Google Scholar 

  32. Khor E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials. 1997;18:95–105.

    Article  PubMed  CAS  Google Scholar 

  33. Weadock KS, Miller EJ, Bellincampi LD, Zawadski JP, Dunn MG. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res. 1995;29(11):1373–9.

    Article  PubMed  CAS  Google Scholar 

  34. Pieper JS, van der Kraan PM, Hafmans T, Kamp J, Buma P, van Susante JLC, et al. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials. 2002;23:3183–92.

    Article  PubMed  CAS  Google Scholar 

  35. Park SN, Lee HJ, Lee KH, Suh H. Biological characterization of EDC-crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration. Biomaterials. 2003;24:1631–41.

    Article  PubMed  CAS  Google Scholar 

  36. Daamen WF, van Moerkerk HTB, Hafmans T, Buttafoco L, Poot AA, Veerkamp JH, et al. Preparation and evaluation of molecularly-defined collagen-elastin-glycosaminoglycan scaffolds for tissue engineering. Biomaterials. 2003;24:4001–9.

    Article  PubMed  CAS  Google Scholar 

  37. Grabarek Z, Gergely J. Zero-length crosslinking procedure with the use of active esters. Anal Biochem. 1990;185:131–5.

    Article  PubMed  CAS  Google Scholar 

  38. Yang L, Fitie CFC, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J. Mechanical properties of single electrospun collagen type I fibers. Biomaterials. 2008;29:955–62.

    Article  PubMed  CAS  Google Scholar 

  39. Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci. 2004;9:1422–32.

    Article  PubMed  CAS  Google Scholar 

  40. Yang X, Ogbolu KR, Wang H. Multifunctional nanofibrous scaffold for tissue engineering. J Exp Nanosci. 2008;3(4):329–45.

    Article  CAS  Google Scholar 

  41. Venugopal J, Ma LL, Yong T, Ramakrishna S. In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices. Cell Biol Int. 2005;29:861–7.

    Article  PubMed  CAS  Google Scholar 

  42. L’Heureux N, Paquet S, Labbe R, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. FASEB J. 1998;12:47–56.

    PubMed  Google Scholar 

  43. Girton TS, Oegema TR, Grassl ED, Isenberg BC, Tranquillo RT. Mechanisms of stiffening and strengthening in media-equivalents fabricated using glycation. J Biomech Eng-T ASME. 2000;122:216–23.

    Article  CAS  Google Scholar 

  44. Garg K, Bowlin GL. Electrospinning jets and nanofibrous structures. Biomicrofluidics. 2011. doi:10.1063/1.3567097.

  45. Stitzel JD, Pawlowski KJ, Wnek GE, Simpson DG, Bowlin GL. Arterial smooth muscle cell proliferation on a novel, biomimicking, biodegradable vascular graft scaffold. J Biomater Appl. 2001;16(1):22–33.

    Article  PubMed  CAS  Google Scholar 

  46. Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, et al. Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials. 2006;27:724–34.

    Article  PubMed  CAS  Google Scholar 

  47. Lee SJ, Liu J, Oh SH, Soker S, Atala A, Yoo J. Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials. 2008;29:2891–8.

    Article  PubMed  CAS  Google Scholar 

  48. Tillman BW, Yazdani SK, Lee SJ, Geary RL, Atala A, Yoo JJ. The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials. 2009;30:583–8.

    Article  PubMed  CAS  Google Scholar 

  49. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliver Rev. 2007;59(14):1413–33.

    Article  CAS  Google Scholar 

  50. Zhong SP, Zhang YZ, Lim CT. Tissue scaffolds for skin wound healing and dermal reconstruction. Nanomed Nanobiotechnol. 2010;2:510–25.

    Article  CAS  Google Scholar 

  51. Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, et al. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials. 2006;27:1452–61.

    Article  PubMed  CAS  Google Scholar 

  52. Chen DW, Hsu YH, Liao JY, Liu SJ, Chen JK, Ueng SWN. Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes. Int J Pharm. 2012;430:335–41.

    Article  PubMed  CAS  Google Scholar 

  53. Sundar SS, Sangeetha D. Fabrication and evaluation of electrospun collagen/poly(N-isopropyl acrylamide)/chitosan mat as blood-contacting biomaterials for drug delivery. J Mater Sci-Mater M. 2012. doi:10.1007/s10856-012-4610-x.

  54. Elliott CG, Wang J, Guo X, Xu S, Eastwood M, Guan J, et al. Periostin modulates myofibroblast differentiation during full-thickness cutaneous wound repair. J Cell Sci. 2011;125:121–32.

    Article  Google Scholar 

  55. Liu T, Xu J, Chan BP, Chew SY. Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair. J Biomed Mater Res A. 2011;100A:236–42.

    Google Scholar 

  56. Lin J, Li C, Zhao Y, Hu J, Zhang LM. Co-electrospun nanofibrous membranes of collagen and zein for wound healing. Appl Mater Interfaces. 2012;4:1050–7.

    Article  CAS  Google Scholar 

  57. Jiang Q, Reddy N, Yang Y. Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds. Acta Biomaterialia. 2010;6:4042–51.

    Article  PubMed  CAS  Google Scholar 

  58. Holmes DF, Graham HK, Trotter JA, Kadler KE. STEM/TEM studies of collagen fibril assembly. Micron. 2001;32(3):273–85.

    Article  PubMed  CAS  Google Scholar 

  59. Sung HW, Chang WH, Ma CY, Lee MH. Crosslinking of biological tissues using genipin and/or carbodiimide. J Biomed Mater Res. 2003;64A:427–38.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary E. Wnek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fullana, M.J., Wnek, G.E. Electrospun collagen and its applications in regenerative medicine. Drug Deliv. and Transl. Res. 2, 313–322 (2012). https://doi.org/10.1007/s13346-012-0087-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-012-0087-x

Keywords

Navigation