Skip to main content

Advertisement

Log in

High efficiency intranasal drug delivery using Intravail® alkylsaccharide absorption enhancers

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

A new class of alkylsaccharide transmucosal delivery enhancement agents are described that overcome the principal limitations preventing broad acceptance of intranasal administration for many potential applications in systemic drug delivery, namely, poor transmucosal absorption and damage to the nasal mucosa. This review will describe recent developments in use of these excipients in human clinical trials and preclinical studies along with their chemical and pharmacological properties and explore commercial implications of the use of these excipients in introduction of new intranasal formulations of peptidic and nonpeptidic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hussain AA. Intranasal drug delivery. Adv Drug Deliv Rev. 1998;29:39–49.

    Article  PubMed  CAS  Google Scholar 

  2. Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11:1–18.

    Article  PubMed  CAS  Google Scholar 

  3. Illum L. Nasal drug delivery—possibilities, problems and solutions. J Control Rel. 2003;87:187–98.

    Article  CAS  Google Scholar 

  4. Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol. 2004;56:3–17.

    Article  PubMed  CAS  Google Scholar 

  5. Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Intl J Pharm. 2007;337:1–24.

    Article  CAS  Google Scholar 

  6. Pontiroli AE. Peptide hormones: review of current and emerging uses by nasal delivery. Adv Drug Deliv Rev. 1998;29:81–7.

    Article  PubMed  CAS  Google Scholar 

  7. Sayani AP, Chien YW. Systemic delivery of peptides and proteins across absorptive mucosae. Crit Rev Ther Drug Carrier Syst. 1996;13:85–184.

    PubMed  CAS  Google Scholar 

  8. Song Y, Wang Y, Thakur R, Meidan VM, Michniak B. Mucosal drug delivery: membranes, methodologies, and applications. Crit Rev Ther Drug Carrier Syst. 2004;21:195–256.

    Article  PubMed  CAS  Google Scholar 

  9. Grassin-Delyle S, Buenestado A, Naline E, Faisy C, Blouquit-Laye S, Couderc LJ, Le Guen M, Fischler M, Devillier P. Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol Ther. 2012;134(3):366–79.

    Article  PubMed  CAS  Google Scholar 

  10. Pires A, Fortunal A, Alves G, Falcão A. Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci. 2009;12(3):288–311.

    PubMed  CAS  Google Scholar 

  11. Material Safety Data Sheet TEGOSOFT LSE 65 K SOFT Evonik Goldschmidt GmbH Version: 1.11 Date Issued: 01/21/2010 Goldschmidtstr. 100 Essen, 05 45127.

  12. Kocher K, Wiegand HJ. Toxicology and dermatology. In: Balzer D, editor. Surfactant science series, Vol. 91, Non ionic surfactants: alkylpolyglucosides. New York: Marcel Dekker; 2000. p. 365–83.

    Google Scholar 

  13. Sucrose esters of fatty acids and sucroglycerides (WHO Food Additives Series 40), The forty-ninth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) Geneva 1998. http://www.inchem.org/documents/jecfa/jecmono/v040je04.htm.

  14. Gizurarson S, Gudbrandsson FK, Jónsson H, Bechgaard E. Intranasal administration of diazepam aiming at the treatment of acute seizures: clinical trials in healthy volunteers. Biol Pharm Bull. 1999;22(4):425–7.

    Article  PubMed  CAS  Google Scholar 

  15. Rifkin RA, Maggio ET, Dike S, Kerr DA, Levy M. n-Dodecyl-β-d-maltoside inhibits aggregation of human interferon-β-1b and reduces its immunogenicity. J Neuroimmune Pharmacol. 2011;6:158–62.

    Article  PubMed  Google Scholar 

  16. Maggio ET. Use of excipients to control aggregation in peptide and protein formulations. J Excip Food Chem. 2010;1:40–9.

    CAS  Google Scholar 

  17. Federal Register: September 14, 2005 (Volume 70, Number 177)] Page 54281-54286 Alkyl (C10-C16) Polyglycosides; exemptions from the requirement of a tolerance.

  18. Ha E, Wei Wang W, Wang YJ. Peroxide formation in polysorbate 80 and protein stability. J Pharm Sci. 2002;91:2252–64.

    Article  PubMed  CAS  Google Scholar 

  19. Hamburger R, Azaz E, Donbrow M. Autoxidation of polyethylenic non-ionic surfactants and of polyethylene glycols. Pharm Acta Helv. 1975;50:10–7.

    PubMed  CAS  Google Scholar 

  20. Jaeger J, Sorensen K, Wolff SP. Peroxide accumulation in detergents. J Biochem Biophys Methods. 1994;29:77–81.

    Article  PubMed  CAS  Google Scholar 

  21. Lam XM, Lai WG, Chan EK, Ling V, Hsu CC. Site-specific tryptophan oxidation induced by autocatalytic reaction of polysorbate 20 in protein formulation. Pharm Res. 2011;28:2543–55.

    Article  PubMed  CAS  Google Scholar 

  22. Chen S-C, Eiting KT, Li AAW, Lamharz N. and Quay SC. Peptide drug permeation enhancement by select classes of lipids. 45th American Society for Cell Biology Meeting, December 10–14, 2005, San Francisco (late abstract).

  23. Scotto-Lavino E, Easow J, Simon S, Roemer E. An in vitro model for the rapid screening of potential components and formulations for nasal drug delivery. In Vitro Cell Dev Biol. 2002;38:12A.

    Google Scholar 

  24. El-Shafy MA, Roemer E, de Meireles J, Biswas M, Quay SC. Permeability and cytotoxicity of macromolecules from nasal formulations using EpiAirway™ tissue model. AAPS Pharm Sci. 2001;3(3):S-58.

    Google Scholar 

  25. Chen S-C, Eiting KT, Li AAW, Lamharz N, Quay SC. Identification of tight junction modulating lipids. J Pharm Sci. 2009;98(2):606–19.

    Article  Google Scholar 

  26. Arnold JJ, Ahsan F, Meezan E, Pillion DJ. Correlation of tetradecylmaltoside induced increases in nasal peptide drug delivery with morphological changes in nasal epithelial cells. J Pharm Sci. 2004;93(9):2205–13.

    Article  PubMed  CAS  Google Scholar 

  27. Cüreoğlu S, Akkus M, Osma U, Yaldiz M, Oktay F, Can B, Güven C, Tekın M, Merıç F. The effect of benzalkonium chloride on rabbit nasal mucosa in vivo: an electron microscopy study. Eur Arch Otorhinolaryngol. 2002;259:362–4.

    PubMed  Google Scholar 

  28. Arnold JJ, Fyrberg MD, Meezan E, Pillion DJ. Reestablishment of the nasal permeability barrier to several peptides following exposure to the absorption enhancer tetradecyl-b-d-maltoside. J Pharm Sci. 2010;99(4):1912–20.

    PubMed  CAS  Google Scholar 

  29. Ahsan F, Arnold J, Meezan E, Pillion DJ. Enhanced bioavailability of calcitonin formulated with alkylglycosides following nasal and ocular administration in rats. Pharm Res. 2001;18(12):1742–6.

    Article  PubMed  CAS  Google Scholar 

  30. Illum L. Nasal delivery. The use of animal models to predict performance in man. J Drug Target. 1996;3(6):427–42.

    Article  PubMed  CAS  Google Scholar 

  31. Maggio ET, Meezan E, Ghambeer DKS, Pillion DJ. High bioavailability formulation of salmon calcitonin—potential opportunities for expanded use in analgesia. Drug Deliv Technol. 2010;10:58–63.

    CAS  Google Scholar 

  32. Krause D, Eddy P, Merutka G, MacDonald B. Intranasal (IN), pharmacokinetic (PK) and bioavailability of ZT-034 a parathyroid hormone (PTH) analog. ASBMR Poster Presentation Number: SU0405 September 13, 2009.

  33. Eddy P, Krause D, Merutka G, MacDonald B. Intranasal (IN) pharmacokinetics (PK) and bioavailability of ZT-031, a novel parathyroid hormone (PTH) analog. ASBMR Poster Presentation Number: MO0385 September 14, 2009.

  34. Neurelis announces positive results from phase 1 pharmacokinetic study of NRL-01 (intranasal diazepam) http://www.bizjournals.com/prnewswire/press_releases/2011/06/14/LA19174. Accessed 15April 2012.

  35. Ivaturi VD, Riss JR, Kriel RL, Cloyd JC. Pharmacokinetics and tolerability of intranasal diazepam and midazolam in healthy adult volunteers. Acta Neurol Scand. 2009;120(5):353–7.

    Article  PubMed  CAS  Google Scholar 

  36. Ivaturi VD, Riss JR, Kriel RL, Siegel RA, Cloyd JC. Bioavailability and tolerability of intranasal diazepam in healthy adult volunteers. Epilepsy Res. 2009;84(2–3):120–6.

    Article  PubMed  CAS  Google Scholar 

  37. Li L, Nandi I, Kim KH. Development of an ethyl laurate-based microemulsion for rapid-onset intranasal delivery of diazepam. Int J Pharm. 2002;237(1–2):77–85.

    Article  PubMed  CAS  Google Scholar 

  38. Maggio ET. Compositions for drug administration. US Patent Application 2010/0160378A1, June 24, 2010.

  39. Waldrop MA, Grasso P. Intranasal delivery of mouse [D-Leu-4]-OB3, a synthetic peptide amide with leptin like activity, improves energy balance, glycemic control, insulin sensitivity, and bone formation in leptin-resistant C57BLK/6-m db/db mice. Diabetes, Obes Metab. 2010;12:871–5.

    Article  CAS  Google Scholar 

  40. Novakovic ZM, Leinung MC, Lee DW, Grasso P. Intranasal administration of mouse [D-Leu-4]OB3, a synthetic peptide amide with leptin-like activity, enhances total uptake and bioavailability in Swiss Webster mice when compared to intraperitoneal, subcutaneous, and intramuscular delivery systems. Regul Pept. 2009;154:107–11.

    Article  PubMed  CAS  Google Scholar 

  41. Maggio ET. Intranasal administration of active agents to the central nervous system. US Pat App. 2011/0129462A1, June 2, 2011.

  42. Lee DW, Leinung MC, Grasso P. OB3 Oral delivery of mouse [D-Leu-4]-OB3, a synthetic peptide amide with leptin-like activity, in male Swiss Webster mice: a study comparing the pharmacokinetics of oral delivery to intraperitoneal, subcutaneous, intramuscular, and intranasal administration. Regul Pept. 2010;160:129–32.

    Article  PubMed  CAS  Google Scholar 

  43. Novakovic ZM, Leinung MC, Lee DW, Grasso P. Oral delivery of mouse [D-Leu-4]-OB3, a synthetic peptide amide with leptin-like activity, in male C57BL/6J wild-type and ob/ob mice: effects on energy balance, glycemic control and serum osteocalcin levels. Diabetes, Obes Metab. 2010;12:532–9.

    Article  CAS  Google Scholar 

  44. Maggio ET, Grasso P. Oral delivery of octreotide acetate in Intravail improves uptake, half-life, and bioavailability over subcutaneous administration in male Swiss Webster mice. Regul Pept. 2011;167:233–8.

    Article  PubMed  CAS  Google Scholar 

  45. Leinung MC, Grasso P. [D-Leu-4]-OB3, a synthetic peptide amide with leptin-like activity, augments the effects of orally delivered exenatide (Byetta®) and pramlintide (Symlin®) on energy balance and glycemic control in insulin-resistant male C57BLK/6-m db/db mice. Regulatory Peptides. 2012; in press.

  46. Bennett JA, DeFreest L, Anaka I, Saadati H, Balulad S, Jacobson HI, Andersen TT. AFPep: an anti-breast cancer peptide that is orally active. Breast Cancer Res Treat. 2006;98:133–41.

    Article  PubMed  CAS  Google Scholar 

  47. Andersen TT, Georgekutty J, DeFreest LA, Amaratunga G, Narendran A, Lemanski N, Jacobson HI, Bennett JA. An α-fetoprotein-derived peptide reduces the uterine hyperplasia and increases the antitumour effect of tamoxifen. Br J Cancer. 2007;97:327–33.

    Article  PubMed  CAS  Google Scholar 

  48. DeFreest LA, Mesfin FB, Joseph L, McLeod DJ, Stallmer A, Reddy S, Balulad SS, Jacobson HI, Andersen TT, Bennett JA. Synthetic peptide derived from alpha-fetoprotein inhibits growth of human breast cancer: investigation of the pharmacophore and synthesis optimization. J Pept Res. 2004;63(5):409–19.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward T. Maggio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maggio, E.T., Pillion, D.J. High efficiency intranasal drug delivery using Intravail® alkylsaccharide absorption enhancers. Drug Deliv. and Transl. Res. 3, 16–25 (2013). https://doi.org/10.1007/s13346-012-0069-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-012-0069-z

Keywords

Navigation