Skip to main content
Log in

Liposomes as multicompartmental carriers for multidrug delivery in anticancer chemotherapy

  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

A new PEGylated liposomal formulation containing both gemcitabine (GEM) and paclitaxel (PTX) was investigated in order to realize an innovative multidrug carrier (MDC) to test on human cancer cells. The MDC in question was realized by the liposome extrusion method. Photocorrelation spectroscopy was used for the physicochemical characterization of the vesicular carriers. In vitro cytotoxicity was studied through MTT testing. The contemporary presence of the two antitumoral compounds induced no destabilization phenomena in the liposomal structure. The extrusion method provided vesicles with mean sizes of ∼100 nm and a zeta-potential of ∼ −10 mV. The liposomal MDC showed a high drug loading capacity (∼90% and ∼80% for GEM and PTX, respectively) as well as a controlled release of the active compounds over a 24-h period. Cell viability testing on Michigan Cancer Foundation-7 human breast cancer cells evidenced the MDC as having a stronger cytotoxic effect with respect to the active compounds tested in free and liposomal formulations, both as single molecules and in association. Flow cytometry furnished evidence of the synergistic in vitro antitumoral action between the GEM and PTX co-encapsulated the liposomal MDC. This formulation may offer even more advantages in in vivo testing in terms of drug pharmacokinetic, biodistribution, and antitumoral efficacy for the treatment of breast cancer, as compared to past formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albain KS, Nag SM, Calderillo-Ruiz G, et al. Gemcitabine plus paclitaxel versus paclitaxel monotherapy in patients with metastatic breast cancer and prior anthracycline treatment. J Clin Oncol. 2008;26:3950–7.

    Article  PubMed  Google Scholar 

  • Batist G, Gelmon KA, Chi KN, et al. Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res. 2009;15:692–700.

    Article  CAS  PubMed  Google Scholar 

  • Bernsdorff C, Reszka R, Winter R. Interaction of the anticancer agent Taxol (paclitaxel) with phospholipid bilayers. J Biomed Mater Res. 1999;46:141–9.

    Article  CAS  PubMed  Google Scholar 

  • Calvagno MG, Celia C, Paolino D, et al. Effects of lipid composition and preparation conditions on physical–chemical properties, technological parameters and in vitro biological activity of gemcitabine-loaded liposomes. Curr Drug Deliv. 2007;4:89–101.

    Article  CAS  PubMed  Google Scholar 

  • Celano M, Calvagno MG, Bulotta S, et al. Cytotoxic effects of gemcitabine-loaded liposomes in human anaplastic thyroid carcinoma cells. BMC Cancer. 2004;4:63.

    Article  PubMed  Google Scholar 

  • Celia C, Calvagno MG, Paolino D, et al. Improved in vitro anti-tumoral activity, intracellular uptake and apoptotic induction of gemcitabine-loaded pegylated unilamellar liposomes. J Nanosci Nanotechnol. 2008a;8:2102–13.

    Article  CAS  PubMed  Google Scholar 

  • Celia C, Malara N, Terracciano R, et al. Liposomal delivery improves the growth-inhibitory and apoptotic activity of low doses of gemcitabine in multiple myeloma cancer cells. Nanomedicine. 2008b;4:155–66.

    CAS  PubMed  Google Scholar 

  • Colomer R. What is the best schedule for administration of gemcitabine–taxane? Cancer Treat Rev. 2005;31 Suppl 4:23–8.

    Article  Google Scholar 

  • Cosco D, Bulotta A, Ventura M, et al. In vivo activity of gemcitabine-loaded PEGylated small unilamellar liposomes against pancreatic cancer. Cancer Chemother Pharmacol. 2009a;64:1009–20.

    Article  CAS  PubMed  Google Scholar 

  • Cosco D, Paolino D, Muzzalupo R, et al. Novel PEG-coated niosomes based on bola-surfactant as drug carriers for 5-fluorouracil. Biomed Microdevices. 2009b;11:1115–25.

    Article  CAS  Google Scholar 

  • Crosasso P, Ceruti M, Brusa P, Arpicco S, Dosio F, Cattel L. Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J Control Release. 2000;63:19–30.

    Article  CAS  PubMed  Google Scholar 

  • Dasanu CA. Gemcitabine: vascular toxicity and prothrombotic potential. Expert Opin Drug Saf. 2008;7:703–16.

    Article  CAS  PubMed  Google Scholar 

  • Dhanikula AB, Panchagnula R. Fluorescence anisotropy, FT-IR spectroscopy and 31-P NMR studies on the interaction of paclitaxel with lipid bilayers. Lipids. 2008;43:569–79.

    Article  CAS  PubMed  Google Scholar 

  • Drulis-Kawa Z, Dorotkiewicz-Jach A. Liposomes as delivery systems for antibiotics. Int J Pharm. 2010;387:187–98.

    Article  CAS  PubMed  Google Scholar 

  • Gabizon AA, Shmeeda H, Zalipsky S. Pros and cons of the liposome platform in cancer drug targeting. J Liposome Res. 2006;16:175–83.

    Article  CAS  PubMed  Google Scholar 

  • Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37:1590–8.

    Article  CAS  PubMed  Google Scholar 

  • Gudena V, Montero AJ, Glück S. Gemcitabine and taxanes in metastatic breast cancer: a systematic review. Ther Clin Risk Manag. 2008;4:1157–64.

    CAS  PubMed  Google Scholar 

  • Harasym TO, Tardi PG, Harasym NL, Harvie P, Johnstone SA, Mayer LD. Increased preclinical efficacy of irinotecan and floxuridine coencapsulated inside liposomes is associated with tumor delivery of synergistic drug ratios. Oncol Res. 2007;16:361–74.

    PubMed  Google Scholar 

  • Hedley DW, Clark GM, Cornelisse CJ, Killander D, Kute T, Merkel D. Consensus review of the clinical utility of DNA cytometry in carcinoma of the breast. Report of the DNA cytometry consensus conference. Cytometry. 1993;14:482–5.

    Article  CAS  PubMed  Google Scholar 

  • Heinemann V, Xu YZ, Chubb S, et al. Cellular elimination of 2′, 2′-difluorodeoxycytidine 5′-triphosphate: a mechanism of self-potentiation. Cancer Res. 1992;52:533–9.

    CAS  PubMed  Google Scholar 

  • Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1:297–315.

    Article  CAS  PubMed  Google Scholar 

  • Injac R, Strukelj B. Recent advances in protection against doxorubicin-induced toxicity. Technol Cancer Res Treat. 2008;7:497–516.

    CAS  PubMed  Google Scholar 

  • Metro G, Fabi A, Russillo M, et al. Taxanes and gemcitabine doublets in the management of HER-2 negative metastatic breast cancer: towards optimization of association and schedule. Anticancer Res. 2008;28:1245–58.

    CAS  PubMed  Google Scholar 

  • Nagayasu A, Uchiyama K, Kiwada H. The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv Drug Deliv Rev. 1999;40:75–87.

    Article  CAS  PubMed  Google Scholar 

  • Paolino D, Cosco D, Cilurzo F, Fresta M. Innovative drug delivery systems for the administration of natural compounds. Curr Bioact Compd. 2007;3:262–77.

    Article  CAS  Google Scholar 

  • Paolino D, Cosco D, Racanicchi L, et al. Gemcitabine-loaded PEGylated unilamellar liposomes vs GEMZAR: biodistribution, pharmacokinetic features and in vivo antitumor activity. J Control Release. 2010;144:144–50.

    Article  CAS  PubMed  Google Scholar 

  • Papahadjopoulos D, Allen TM, Gabizon A, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA. 1991;88:11460–4.

    Article  CAS  PubMed  Google Scholar 

  • Robert NJ, Vogel CL, Henderson IC, et al. The role of the liposomal anthracyclines and other systemic therapies in the management of advanced breast cancer. Semin Oncol. 2004;31(6 Suppl 13):106–46.

    Article  CAS  PubMed  Google Scholar 

  • Rowinsky EK, Donehower RC. Paclitaxel (taxol). N Engl J Med. 1995;332:1004–14.

    Article  CAS  PubMed  Google Scholar 

  • Serrano MJ, Sánchez-Rovira P, Algarra I, Jaén A, Lozano A, Gaforio JJ. Evaluation of a gemcitabine–doxorubicin–paclitaxel combination schedule through flow cytometry assessment of apoptosis extent induced in human breast cancer cell lines. Jpn J Cancer Res. 2002;93:559–66.

    CAS  PubMed  Google Scholar 

  • Soloman R, Gabizon AA. Clinical pharmacology of liposomal anthracyclines: focus on pegylated liposomal doxorubicin. Clin Lymphoma Myeloma. 2008;8:21–32.

    Article  PubMed  Google Scholar 

  • Sponziello M, Scipioni A, Durante C, et al. Regulation of sodium/iodide symporter and lactoperoxidase expression in four human breast cancer cell lines. J Endocrinol Invest. 2010;33:2–6.

    CAS  PubMed  Google Scholar 

  • Tardi PG, Gallagher RC, Johnstone S, et al. Coencapsulation of irinotecan and floxuridine into low cholesterol-containing liposomes that coordinate drug release in vivo. Biochim Biophys Acta. 2007;1768:678–87.

    Article  CAS  PubMed  Google Scholar 

  • Tardi PG, Dos Santos N, Harasym TO, et al. Drug ratio-dependent antitumor activity of irinotecan and cisplatin combinations in vitro and in vivo. Mol Cancer Ther. 2009;8:2266–75.

    Article  CAS  PubMed  Google Scholar 

  • Theodossiou C, Cook JA, Fisher J, et al. Interaction of gemcitabine with paclitaxel and cisplatin in human tumor cell lines. Int J Oncol. 1998;12:825–32.

    CAS  PubMed  Google Scholar 

  • Tolis C, Peters GJ, Ferreira CG, Pinedo HM, Giaccone G. Cell cycle disturbances and apoptosis induced by topotecan and gemcitabine on human lung cancer cell lines. Eur J Cancer. 1999;35:796–807.

    Article  CAS  PubMed  Google Scholar 

  • Torres K, Horwitz SB. Mechanisms of taxol-induced cell death are concentration dependent. Cancer Res. 1998;58:3620–6.

    CAS  PubMed  Google Scholar 

  • Vail DM, Amantea MA, Colbern GT, Martin FJ, Hilger RA, Working PK. Pegylated liposomal doxorubicin: proof of principle using preclinical animal models and pharmacokinetic studies. Semin Oncol. 2004;31:16–35.

    Article  CAS  PubMed  Google Scholar 

  • van Moorsel CJ, Peters GJ, Pinedo HM. Gemcitabine: future prospects of single-agent and combination studies. Oncologist. 1997;2:127–34.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the Fondazione Umberto Di Mario (Prof. Diego Russo) and the Italian Ministry of Health—Regione Calabria (Dipartimento Tutela della Salute Politiche Sanitarie e Sociali). The authors are very grateful to Dr. Lynn Whitted for her revision of the language of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Fresta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosco, D., Paolino, D., Maiuolo, J. et al. Liposomes as multicompartmental carriers for multidrug delivery in anticancer chemotherapy. Drug Deliv. and Transl. Res. 1, 66–75 (2011). https://doi.org/10.1007/s13346-010-0007-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-010-0007-x

Keywords

Navigation